Bus arrival time prediction not only provides convenience for passengers, but also helps to improve the efficiency of intelligent transportation system. Unfortunately, the low precision of bus-mounted GPS system, lack of real-time traffic information and poor performance of prediction model lead to low estimation accuracy-greatly influence bus service performance. Hence, in this paper, a GPS calibration method is put forward, while projection rules of specific road shapes are discussed. Moreover, two traffic factors, travel factor and dwelling factor, are defined to express real-time traffic state. Then, considering both historic data and real-time traffic condition, a hybrid dynamic BAT prediction factor, which achieves accuracy enhancement by taking into account traffic flow evaluation results and GPS position calibration, is defined. A LSTM training model is construct to realize BAT prediction. Experiment results demonstrate that our technique can provide a higher level of accuracy compared to methods based on traditional time-ofarrival techniques, especially in the accuracy of multi-stops BAT prediction. INDEX TERMS Bus arrival time prediction, LSTM model, GPS data calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.