Tumor
hypoxia is the Achilles heel of oxygen-dependent photodynamic
therapy (PDT), and tremendous challenges are confronted to reverse
the tumor hypoxia. In this work, an oxidative phosphorylation inhibitor
of atovaquone (ATO) and a photosensitizer of chlorine e6 (Ce6)-based
self-delivery nanomedicine (designated as ACSN) were prepared via
π–π stacking and hydrophobic interaction for O2-economized PDT against hypoxic tumors. Specifically, carrier-free
ACSN exhibited an extremely high drug loading rate and avoided the
excipient-induced systemic toxicity. Moreover, ACSN not only dramatically
improved the solubility and stability of ATO and Ce6 but also enhanced
the cellular internalization and intratumoral permeability. Abundant
investigations confirmed that ACSN effectively suppressed the oxygen
consumption to reverse the tumor hypoxia by inhibiting mitochondrial
respiration. Benefiting from the synergistic mechanism, an enhanced
PDT effect of ACSN was observed on the inhibition of tumor growth.
This self-delivery system for oxygen-economized PDT might be a potential
appealing clinical strategy for tumor eradication.
Background
Realistic, portable, and scalable lectures, cadaveric models, 2D atlases and computer simulations are being combined more frequently for teaching anatomy, which result in major increases in user satisfaction. However, although digital simulations may be more portable, interesting, or motivating than traditional teaching tools, whether they are superior in terms of student learning remain unclear. This paper presents a study in which the educational effectiveness of a virtual reality (VR) skull model is compared with that of cadaveric skulls and atlases. The aim of this study was to compare the results of teaching with VR to results of teaching with traditional teaching methods by administering objective questionnaires and perception surveys.
Methods
A mixed-methods study with 73 medical students was conducted with three different groups, namely, the VR group (N = 25), cadaver group (N = 25) and atlas group (N = 23). Anatomical structures were taught through an introductory lecture and model-based learning. All students completed the pre- and post-intervention tests, which comprised a theory test and an identification test. The theory test consisted of 18 multiple-choice questions, and the identification test consisted of 25 fill-in-the-blank questions.
Results
The participants in all three groups had significantly higher total scores on the post-intervention test than on the pre-intervention test; the post-intervention test score in the VR group was not statistically significantly higher than the post-intervention test score of the other groups (VR: 30 [IQR: 22–33.5], cadaver: 26 [IQR: 20–31.5], atlas: 28[IQR: 20–33]; p > 0.05). The participants in the VR and cadaver groups provided more positive feedback on their learning models than the atlas group (VR: 26 [IQR: 19–30], cadaver: 25 [IQR: 19.5–29.5], atlas: 12 [IQR: 9–20]; p < 0.001).
Conclusions
The skull virtual learning resource (VLR) was equally efficient as the cadaver skull and atlas in teaching anatomy structures. Such a model can aid individuals in understanding complex anatomical structures with a higher level of motivation and tolerable adverse effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.