Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Results: Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. Conclusions: The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will ha...
Heavy metal tungsten alloys have replaced lead and depleted uranium in many munitions applications, due to public perception of these elements as environmentally unsafe. Tungsten materials left in the environment may become bioaccessible as tungstate, which might lead to population exposure through water and soil contamination. Although tungsten had been considered a relatively inert and toxicologically safe material, recent research findings have raised concerns about possible deleterious health effects after acute and chronic exposure to this metal. This investigation describes tissue distribution of tungsten in mice following oral exposure to sodium tungstate. Twenty-four 6-9 weeks-old C57BL/6 laboratory mice were exposed to different oral doses of sodium tungstate (0, 62.5, 125, and 200 mg/kg/d) for 28 days, and after one day, six organs were harvested for trace element analysis with inductively coupled plasma mass spectrometry (ICP-MS). Kidney, liver, colon, bone, brain, and spleen were analyzed by sector-field high-resolution ICP-MS. The results showed increasing tungsten levels in all organs with increased dose of exposure, with the highest concentration found in the bones and the lowest concentration found in brain tissue. Gender differences were noticed only in the spleen (higher concentration of tungsten in female animals), and increasing tungsten levels in this organ were correlated with increased iron levels, something that was not observed for any other organ or either of the two other metals analyzed (nickel and cobalt). These findings confirmed most of what has been published on tungsten tissue distribution; they also showed that the brain is relatively protected from oral exposure. Further studies are necessary to clarify the findings in splenic tissue, focusing on possible immunological effects of tungsten exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.