In this paper, we propose a highly efficient deep learning-based method for pixel-wise surface defect segmentation algorithm in machine vision. Our method is composed of a segmentation stage (stage 1), a detection stage (stage 2), and a matting stage (stage 3). In the segmentation stage, a lightweight fully convolutional network (FCN) is employed to make a pixel-wise prediction of the defect areas. Those predicted defect areas act as the initialization of stage 2, guiding the process of detection to correct the improper segmentation. In the matting stage, a guided filter is utilized to refine the contour of the defect area to reflect the real abnormal region. Besides that, aiming to achieve the tradeoff between efficiency and accuracy, and simultaneously we use depthwise&pointwise convolution layer, strided depthwise convolution layer, and upsample depthwise convolution layer to replace the standard convolution layer, pooling layer, and deconvolution layer, respectively. We validate our findings by analyzing the performance obtained on the dataset of DAGM 2007.
Although occlusion widely exists in nature and remains a fundamental challenge for pose estimation, existing heatmap-based approaches suffer serious degradation on occlusions. Their intrinsic problem is that they directly localize the joints based on visual information; however, the invisible joints are lack of that. In contrast to localization, our framework estimates the invisible joints from an inference perspective by proposing an Image-Guided Progressive GCN module which provides a comprehensive understanding of both image context and pose structure. Moreover, existing benchmarks contain limited occlusions for evaluation. Therefore, we thoroughly pursue this problem and propose a novel OPEC-Net framework together with a new Occluded Pose (OCPose) dataset with 9k annotated images. Extensive quantitative and qualitative evaluations on benchmarks demonstrate that OPEC-Net achieves significant improvements over recent leading works. Notably, our OCPose is the most complex occlusion dataset with respect to average IoU between adjacent instances. Source code and OCPose will be publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.