This paper describes an imaging method for near-field defect detection in aluminum plates based on Green’s function recovery and application of instantaneous phase coherence weighting factors. The directly acquired acoustic information of near-field defects is usually obscured by the nonlinear effects due to the physical limitation of the acquisition system. Using the diffuse field to recover the Green’s function can effectively retrieve the early time information. However, averaging operations of finite number in this process produces an imperfect imaging result. In order to improve the image quality, two kinds of instantaneous phased coherence weighting factors are used to weight the Green’s function to reduce the background noise and improve the signal-to-noise ratio: the instantaneous phase coherence factor (IPCF), and the instantaneous phase weighting factor (IPWF). Experiments are conducted on two aluminum plates with two and four near-field defects, respectively. As a result, the background noise of amplitude images weighted by IPCF and IPWF is less than that of the conventional total focusing method (TFM). In addition, the IPCF image achieves a better signal-to-noise ratio (SNR) than that of IPWF, and the phase discontinuity in an IPWF image is suppressed through the IPCF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.