Microplastics are widespread emerging contaminants that have been found globally in the marine and freshwater ecosystem, but there is limited knowledge regarding its impact on coral reef ecosystem and underpinning mechanism. In the present study, using Pocillopora damicornis as a model, we investigated cytological, physiological, and molecular responses of a scleractinian coral to acute microplastic exposure. No significant changes were observed in the density of symbiotic zooxanthellae during the entire period of microplastic exposure, while its chlorophyll content increased significantly at 12 h of microplastic exposure. We observed significant increases in the activities of antioxidant enzymes such as superoxide dismutase and catalase, significant decrease in the detoxifying enzyme glutathione S-transferase and the immune enzyme alkaline phosphatase, but no change in the other immune enzyme phenoloxidase during the whole experiment period. Transcriptomic analysis revealed 134 significantly up-regulated coral genes at 12 h after the exposure, enriched in 11 GO terms mostly related to stress response, zymogen granule, and JNK signal pathway. Meanwhile, 215 coral genes were significantly down-regulated at 12 h after exposure, enriched in 25 GO terms involved in sterol transport and EGF-ERK1/2 signal pathway. In contrast, only 12 zooxanthella genes exhibited significant up-regulation and 95 genes down-regulation at 12 h after the microplastic exposure; genes regulating synthesis and export of glucose and amino acids were not impacted. These results suggest that acute exposure of microplastics can activate the stress response of the scleractinian coral P. damicornis, and repress its detoxification and immune system through the JNK and ERK signal pathways. These demonstrate that microplastic exposure can compromise the anti-stress capacity and immune system of the scleractinian coral P. damicornis, despite the minimal impact on the abundance and major photosynthate translocation transporters of the symbiont in the short term.
Coral bleaching occurs worldwide with increasing frequencies and intensities, which is caused by the stress response of stony coral to environmental change, especially increased sea surface temperature. In the present study, transcriptome, expression, and activity analyses were employed to illustrate the underlying molecular mechanisms of heat shock protein 70 (HSP70) in the stress response of coral to environmental changes. The domain analyses of assembled transcripts revealed 30 HSP70 gene contigs in stony coral Pocillopora damicornis. One crucial HSP70 (PdHSP70) was observed, whose expressions were induced by both elevated temperature and ammonium after expression difference analysis. The complete complementary DNA (cDNA) sequence of PdHSP70 was identified, which encoded a polypeptide of 650 amino acids with a molecular weight of 71.93 kDa. The deduced amino acid sequence of PdHSP70 contained a HSP70 domain (from Pro8 to Gly616), and it shared the highest similarity (95%) with HSP70 from Stylophora pistillata. The expression level of PdHSP70 gene increased significantly at 12 h, and returned to the initial level at 24 h after the stress of high temperature (32 °C). The cDNA fragment encoding the mature peptide of PdHSP70 was recombined and expressed in the prokaryotic expression system. The ATPase activity of recombinant PdHSP70 protein was determined, and it did not change significantly in a wide range of temperature from 25 to 40 °C. These results collectively suggested that PdHSP70 was a vital heat shock protein 70 in the stony coral P. damicornis, whose mRNA expression could be induced by diverse environmental stress and whose activity could remain stable under heat stress. PdHSP70 might be involved in the regulation of the bleaching owing to heat stress in the stony coral P. damicornis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.