Hyperspectral imaging (HSI) has become widely used in cultural heritage (CH). This very efficient method for artwork analysis is connected with the generation of large amounts of spectral data. The effective processing of such heavy spectral datasets remains an active research area. Along with the firmly established statistical and multivariate analysis methods, neural networks (NNs) represent a promising alternative in the field of CH. Over the last five years, the application of NNs for pigment identification and classification based on HSI datasets has drastically expanded due to the flexibility of the types of data they can process, and their superior ability to extract structures contained in the raw spectral data. This review provides an exhaustive analysis of the literature related to NNs applied for HSI data in the CH field. We outline the existing data processing workflows and propose a comprehensive comparison of the applications and limitations of the various input dataset preparation methods and NN architectures. By leveraging NN strategies in CH, the paper contributes to a wider and more systematic application of this novel data analysis method.
Hyperspectral imaging (HSI) has been drastically applied in recent years to cultural heritage (CH) analysis, conservation, and also digital restoration. However, the efficient processing of the large datasets registered remains challenging and still in development. In this paper, we propose to use the hierarchical clustering algorithm (HCA) as an alternative machine learning approach to the most common practices, such as principal component analysis(PCA). HCA has shown its potential in the past decades for spectral data classification and segmentation in many other fields, maximizing the information to be extracted from the high-dimensional spectral dataset via the formation of the agglomerative hierarchical tree. However, to date, there has been very limited implementation of HCA in the field of cultural heritage. Data used in this experiment were acquired on real historic film samples with various degradation degrees, using a custom-made push-broom VNIR hyperspectral camera (380–780nm). With the proposed HCA workflow, multiple samples in the entire dataset were processed simultaneously and the degradation areas with distinctive characteristics were successfully segmented into clusters with various hierarchies. A range of algorithmic parameters was tested, including the grid sizes, metrics, and agglomeration methods, and the best combinations were proposed at the end. This novel application of the semi-automating and unsupervised HCA could provide a basis for future digital unfading, and show the potential to solve other CH problems such as pigment mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.