The electrocaloric effect (ECE) offers a unique mechanism to realize environmentally friendly and highly efficient solid-state cooling that completely differs from the conventional vapor-compression refrigeration. Here we report a new class of hybrid films composed of ferroelectric polymer nanowire array and anodic aluminum oxide (AAO) membrane, which displays pronounced ECE driven by relatively low electric fields. Under confinement and orientation of AAO channels on the crystallization of the polymer, the polymer nanowire array shows substantially enhanced ECE that is about 3 times that of the corresponding thin films. Simultaneously, the integrated AAO membrane forms thermally conducting channels for the polymer nanowires, enabling the efficient transfer of cooling energy and operation of the EC materials under high frequencies, which are unattainable based on the currently available EC structures. Consequently, the integrated polymer nanowire-AAO hybrid film exhibits the state-of-the-art cooling power density, outperforming the current ferroelectric polymers, ceramics and composites. This work opens a new route for the development of scalable, high-performance EC materials for next-generation refrigeration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.