This study analyzed the changes of odor and taste in Daokou braised chicken during processing by GC-MS, GC-IMS, e-nose and e-tongue. The 75 and 55 volatile compounds identified in Daokou braised chicken by GC-MS and GC-IMS, respectively, included hydrocarbons, aldehydes, alcohols, terpenes, ketones, heterocyclics, esters, acids and phenols; among them, aldehydes, alcohols and ketones were the most abundant. The number and proportion of volatile compounds in Daokou braised chicken changed significantly (p < 0.05) in the process. The proportion of volatile compounds with animal fatty odor, such as aldehydes and alcohols, decreased, while that of esters, ketones and terpenes from spices with fruity fragrance increased, especially in the braising stage. An e-nose showed that the odor intensities of sulfur-containing and nitrogen oxide compounds were higher (p < 0.05) after the braising stage, but weakened after 2 h braising. An e-tongue showed that saltiness and richness increased significantly (p < 0.05) after braising. The results of these four techniques showed that braising promoted the release of flavor compounds, and was beneficial to salt penetration and umami release. However, long braising could lead to weakened flavor intensity and the introduction of bitterness and astringency. This study also found that GC-IMS and e-nose were more sensitive to trace compounds such as sulfur-containing and nitrogen oxide compounds, esters, acids and phenolics in Daokou braised chicken than GC-MS. The use of multiple technologies could provide more comprehensive flavor profiles for Daokou braised chicken during processing. This study provides insights into the control of flavor of Daokou braised chicken, and may be of practical relevance for the poultry industry.
Bacteriostats, as chemical substances that inhibit bacterial growth, are widely used in the sterilization process; however, their effects on spindle spores are unclear. In this study, the effects of bacteriostats, including nine commonly used food additives and four detergents, on the growth of Clostridium perfringens spores were investigated. The results showed that 0.07‰ ethylenediaminetetraacetate had a good inhibitory effect on C. perfringens spore growth, and the spore turbidity decreased by 4.8% after incubation for 60 min. Furthermore, 0.3‰ tea polyphenols, 0.8‰ D-isoascorbic acid, and 0.75‰ potassium sorbate promoted leakage of contents during spore germination. Among the four detergents, 5‰ glutaraldehyde solution presented the best inhibitory effect on the growth of C. perfringens spores, and the spore turbidity decreased by 5.6% after incubation for 60 min. Further analysis of the inactivation mechanism of spores by the bacteriostats was performed by comparing the leakage of UV-absorbing substances during germination. The results revealed that bacteriostats could not directly kill the spores, but could inactivate them by inhibiting germination or damaging the spore structure during germination, thus preventing the formation of bacterial vegetative bodies. These findings provide important information and reference for the mechanism underlying the effects of different bacteriostatic agents on spore growth.
We present a novel and super-sensitive vancomycin (Van) modified Au@AgNP self-assembly with polydimethylsiloxane (PDMS) (Au@AgNPs/Van-PDMS) film surface-enhanced Raman scattering (SERS) substrate for identification of foodborne pathogens in beef, without the need for in vitro bacterial culture. The results illustrated that the Au@AgNPs/Van-PDMS film exhibited high reproducibility and Raman enhancement effect (1.09×105). Clostridium perfringens, Bacillus subtilis and Staphylococcus aureus isolated from beef captured by Au@AgNPs/Van-PDMS film exhibited high reproducibility and significant differences. Principal component analysis score plots distinguished classes of foodborne pathogens, and the qualitative identification of linear discriminant analysis was correct at 100%. The detection limit of S. aureus in beef was as low as 3 CFU/mL. This method could provide an effective means and technical support for realizing the application of SERS technology for quick and highly sensitive detection of foodborne pathogens in complex environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.