When using valves and pipes, erosion wear is a major issue. Erosion wear can result in equipment shutdown, material replacement, and other issues, as well as the failure of sealing surfaces. The depth of erosion wear is primarily determined by particle velocity, particle size, target material, and use conditions. A combination of the discrete element method (DEM) and computational fluid dynamics (CFD) was used in this study. The dynamic process of particle collision with the sealing surface is also considered. The wear depth was then calculated using Archard’s abrasive wear theory. The erosion wear process of the graphite-sealing surface by gas-solid two-phase flow medium is numerically simulated in a high-temperature triple eccentric butterfly valve using the above theory and method. The erosion wear patterns of graphite-sealing surfaces were investigated under various particle velocities, particle sizes, target materials, and service conditions. The findings indicate that particle velocity and particle size are positively related to wear rate. Soft target wear depth is greater than hard target wear depth. The wear depth decreases as the ambient temperature rises. As a result, graphite has excellent resistance to erosion and wear at high temperatures. When feeding, however, particle velocity and particle size must be considered. The erosion wears characteristics of a high temperature three eccentric butterfly valve investigated in this paper can be used to optimize erosion wear prevention.
The poor dynamic characteristics of the flow balance valve used in a ship’s HVAC system are the main reasons for the hydraulic imbalance and high energy consumption of the system. A new adjustable dynamic flow balance valve structure is designed, which is composed of a self-operated pressure regulator and an electric V-shaped ball valve in series. When the V-shaped ball valve is fully opened at the 20 t/h flow level, the dynamic characteristics of the flow balance valve cannot meet the requirements. A new co-simulation method that combines MATLAB/Simulink and the UDF dynamic grid is proposed to study the dynamic characteristics of a flow balance valve with a 20 t/h flow rate under different pressure drop step signal interference. When the calculation of each micro-element time converges, the valve core motion parameters, the pressure boundary conditions, the valve core axial medium force, and the valve outlet flow are interactively transmitted in the two simulation environments. The discrepancy between the co-simulation and test results is less than 5%, which verifies the accuracy of the co-simulation model. Aiming at the most severe dynamic characteristic working condition where the pressure drop is stepped from 30 to 300 kPa, the influence of different structural parameters on the dynamic characteristics of the balance valve is analyzed. A new surrogate model combining RSM and RBF with the co-simulation method improves the optimization efficiency and fitting accuracy. To improve the convergence of the traditional NSGA-II algorithm, key structural parameters are optimized by combining the NSGA-II algorithm and SDR. The test results show that the dynamic characteristics of the optimized valve are improved, the discrepancy between the stabilized flow rate and 20 t/h does not exceed 4.5%, and the flow is relatively constant. Therefore, the proposed co-simulation and optimization method can be applied to the dynamic characteristic prediction of self-operated valves, such as dynamic flow balance valves, to provide guidance for developing high-precision self-operated valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.