Organic semiconductors are attracting considerable attention as a new thermoelectric material because of their molecular diversity, non-toxicity and easy processing. The side chains which are introduced into two-dimensional (2D) transition metal dichalcogenides (TMDs) by covalent modification lead to a significant decrease in their thermal conductivity. Here, we describe a simple approach to preparing the side chains covalent modification TaS2 (SCCM-TaS2) organic/inorganic hybrid structures, which is a homogeneous and non-destructive technique that does not depend on defects and boundaries. Electrical conductivity of 3,401 S cm−1 and a power factor of 0.34 mW m−1 K−2 are obtained for a hybrid material of SCCM-TaS2, with an in-plane thermal conductivity of 4.0 W m−1 K−1, which is 7 times smaller than the thermal conductivity of the pristine TaS2 crystal. The power factor and low thermal conductivity contribute to a thermoelectric figure of merit (ZT) of ~0.04 at 443 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.