This paper investigates a hierarchical Automatic Generation Control (AGC) strategy for an islanded microgrid, including wind power, solar photovoltaic, micro turbines, small hydropower and energy storage devices. The upper AGC is for central scheduling. The bottom AGC is to optimize the allocation factors, expecting to meet the requirement of energy-saving generation dispatching (ESGD). Three different bottom controllers are presented. Two of them are designed based on reinforcement learning (RL) algorithm. In order to evaluate their control performance, another proportion-based (PROP) controller which has been put into practical application is also presented. Detailed dynamic models of distributed generations and loads are built to simulate the microgrid. System responses to wind turbine tripping and to large load disturbances are tested. The results indicate that the proposed strategy based on RL algorithm can not only achieve reliability and stability of microgrid in islanded mode, but also reduce fossil energy consumption. This approach is a possible candidate for future microgrid control approaches.
A new writing scheme with a unidirectional pulse current is proposed for spin transfer torque (STT) based magnetic random-access memory (MRAM). To investigate the feasibility of the writing scheme, bilayered nano-pillars composed of a soft layer with small in-plane shape anisotropy and a hard layer with either large perpendicular anisotropy (PMA) or in-plane anisotropy (IMA) are designed and their switching behaviors are studied. It is found that in either type of bilayered nano-pillars, with the aid of the attached hard layer, the magnetization of the soft layer can be switched back and forth under a unidirectional pulse current. In an IMA/IMA nano-pillar, the magnetization of the free layer (FL) can achieve excellent alignment, which is in contrast to the IMA/PMA nano-pillar. By optimizing the dimensions and magnetic parameters of the IMA/IMA nano-pillar, a decently low switching current density (4.3 × 1011 A m−2) and ultrashort switching time (<1 ns) can be reached. Based on these results, the unidirectional writing scheme is practical if an IMA/IMA bilayer is used to replace the FL in a magnetic tunnel junction. Considering that a unidirectional writing scheme can enable the application of materials with high spin polarization such as half metals, and avoid the injection of writing current into junction using a special design, it may be very promising for STT-MRAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.