We examined whether persistence of epigenetic DNA methylation (DNA-me) alterations at specific loci over two different time points in people with diabetes are associated with metabolic memory, the prolonged beneficial effects of intensive vs. conventional therapy during the Diabetes Control and Complications Trial (DCCT) on the progression of microvascular outcomes in the long-term followup Epidemiology of Diabetes Interventions and Complications (EDIC) Study. We compared DNA-me profiles in genomic DNA of whole blood (WB) isolated at EDIC Study baseline from 32 cases (DCCT conventional therapy group subjects showing retinopathy or albuminuria progression by EDIC Study year 10) vs. 31 controls (DCCT intensive therapy group subjects without complication progression by EDIC year 10). DNA-me was also profiled in blood monocytes (Monos) of the same patients obtained during EDIC Study years 16-17. In WB, 153 loci depicted hypomethylation, and 225 depicted hypermethylation, whereas in Monos, 155 hypomethylated loci and 247 hypermethylated loci were found (fold change ≥1.3; P < 0.005; cases vs. controls). Twelve annotated differentially methylated loci were common in both WB and Monos, including thioredoxin-interacting protein (TXNIP), known to be associated with hyperglycemia and related complications. A set of differentially methylated loci depicted similar trends of associations with prior HbA1c in both WB and Monos. In vitro, high glucose induced similar persistent hypomethylation at TXNIP in cultured THP1 Monos. These results show that DNA-me differences during the DCCT persist at certain loci associated with glycemia for several years during the EDIC Study and support an epigenetic explanation for metabolic memory.T he landmark Diabetes Control and Complications Trial (DCCT; 1983-1993 clearly showed that intensive (INT) glycemic control profoundly reduces the development and progression of microvascular complications in type 1 diabetes (T1D). The DCCT participants were subsequently followed in the Epidemiology of Diabetes Interventions and Complications (EDIC) Study (1994 to present), during which all subjects were advised to practice INT treatment. Surprisingly, those previously assigned to conventional (CONV) therapy continued to develop complications, such as nephropathy, retinopathy, and macrovascular diseases, at significantly higher rates than the previous INT therapy group, despite nearly similar HbA1c levels during the EDIC Study (1-3). This persistence of benefit from early application of INT therapy, called "metabolic memory," is an enigma in the field of T1D: recent studies have suggested the involvement of epigenetic mechanisms (4-9).Epigenetics is the study of mostly heritable changes in gene expression and phenotype that occur without alterations in the underlying DNA sequence. Epigenetic states are affected by environmental factors, such as aberrant nutrition and metabolic states (4, 6-8, 10). DNA methylation (DNA-me; the classic epigenetic mark) and posttranslational modifications (PTMs) of histo...
OBJECTIVE-The complexity of interactions between genes and the environment is a major challenge for type 1 diabetes studies. Nuclear chromatin is the interface between genetics and environment and the principal carrier of epigenetic information. Because histone tail modifications in chromatin are linked to gene transcription, we hypothesized that histone methylation patterns in cells from type 1 diabetic patients can provide novel epigenetic insights into type 1 diabetes and its complications. RESEARCH DESIGN AND METHODS-We used chromatin immunoprecipitation (ChIP) linked to microarray (ChIP-chip) approach to compare genome-wide histone H3 lysine 9 dimethylation (H3K9me2) patterns in blood lymphocytes and monocytes from type 1 diabetic patients versus healthy control subjects. Bioinformatics evaluation of methylated candidates was performed by Ingenuity Pathway Analysis (IPA) tools.RESULTS-A subset of genes in the type 1 diabetic cohort showed significant increase in H3K9me2 in lymphocytes but not in monocytes. CLTA4, a type 1 diabetes susceptibility gene, was one of the candidates displaying increased promoter H3K9me2 in type 1 diabetes. IPA identified two high-scoring networks that encompassed genes showing altered H3K9me2. Many of them were associated with autoimmune and inflammation-related pathways, such as transforming growth factor-, nuclear factor-B, p38 mitogen-activated protein kinase, toll-like receptor, and interleukin-6. IPA also revealed biological relationships between these networks and known type 1 diabetes candidate genes. CONCLUSIONS-The concerted and synergistic alteration of histone methylation within the identified network in lymphocytes might have an effect on the etiology of type 1 diabetes and its complications. These studies provide evidence of a novel association between type 1 diabetes and altered histone methylation of key genes that are components of type 1 diabetes-related biological pathways and also a new understanding of the pathology of type 1 diabetes. Diabetes 57:3189-3198, 2008
This article reports the study of infrared plasmonics with both random and periodic arrays of indium-tin-oxide (ITO) nanorods (NR). A description is given on the synthesis, patterning, and characterization of physical properties of the ITO NR arrays. A classical scattering model, along with a 3-D finite-element-method and a 3-D finite-difference-time-domain numerical simulation method has been used to interpret the unique light scattering phenomena. It is also shown that the intrinsic plasma frequency can be varied through careful postsynthesis processing of the ITO NRs. Examples are given on how coupled plasmon resonances can be tuned through patterning of the ITO NR arrays. In addition, environment dielectric sensing has been demonstrated through the shift of the resonances as a result of index change surrounding the NRs. These initial results suggest potential for further improvement and opportunities to develop a good understanding of infrared plasmonics using ITO and other transparent conducting oxide semiconducting materials.
We assessed whether epigenetic histone posttranslational modifications are associated with the prolonged beneficial effects (metabolic memory) of intensive versus conventional therapy during the Diabetes Control and Complications Trial (DCCT) on the progression of microvascular outcomes in the long-term Epidemiology of Diabetes Interventions and Complications (EDIC) study. We performed chromatin immunoprecipitation linked to promoter tiling arrays to profile H3 lysine-9 acetylation (H3K9Ac), H3 lysine-4 trimethylation (H3K4Me3), and H3K9Me2 in blood monocytes and lymphocytes obtained from 30 DCCT conventional treatment group subjects (case subjects: mean DCCT HbA1c level >9.1% [76 mmol/mol] and progression of retinopathy or nephropathy by EDIC year 10 of follow-up) versus 30 DCCT intensive treatment subjects (control subjects: mean DCCT HbA1c level <7.3% [56 mmol/mol] and without progression of retinopathy or nephropathy). Monocytes from case subjects had statistically greater numbers of promoter regions with enrichment in H3K9Ac (active chromatin mark) compared with control subjects (P = 0.0096). Among the patients in the two groups combined, monocyte H3K9Ac was significantly associated with the mean HbA1c level during the DCCT and EDIC (each P < 2.2E-16). Of note, the top 38 case hyperacetylated promoters (P < 0.05) included >15 genes related to the nuclear factor-κB inflammatory pathway and were enriched in genes related to diabetes complications. These results suggest an association between HbA1c level and H3K9Ac, and a possible epigenetic explanation for metabolic memory in humans.
The clinical outcomes and therapeutic strategies for infiltrating ductal carcinoma (IDC) and infiltrating lobular carcinoma (ILC) are not uniform. The primary objectives of this study were to identify the differences in the clinical characteristics and prognoses between ILC and IDC, and identify the high-risk population based on the hormone receptor status and metastasis sites. The Surveillance, Epidemiology, and End Results Program database was searched and patients diagnosed with ILC or IDC from 1990 to 2013 were identified. In total,796,335 patients were analyzed, including 85,048 withILC (10.7%) and 711,287 withIDC (89.3%). The ILC group was correlatedwith older age, larger tumor size, later stage, lower grade, metastasis disease(M1) disease, and greater counts ofpositive lymph nodesandestrogen-receptor-positive (ER)/progesterone receptor-positive (PR) positive nodes. The overall survival showed an early advantage for ILC but a worse outcome after 5 years. Regarding the disease-specific survival, the IDC cohort had advantages over the ILC group, both during the early years and long-term. In hormone status and metastasis site subgroup analyses, the ER+/PR+ subgroup had the best survival, while the ER+/PR- subgroup had the worst outcome, especially the ILC cohort. ILC and IDC had different metastasis patterns. The proportion of bone metastasis was higher in the ILC group (91.52%) than that in the IDC (76.04%), and the ILC group was more likely to have multiple metastasis sites. Survival analyses showed patients with ILC had a higher risk of liver metastasis (disease-specific survival[DSS]; P = 0.046), but had a better overall survival than the bone metastasis group (P<0.0001). We concluded that the long-term prognosis for ILC was poorer than that for IDC, and the ER+/PR- subgroup had the worst outcome. Therefore, the metastasis pattern and prognosis must be seriously evaluated, and a combination of endocrine therapy and chemotherapy should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.