Intrinsic anomalous Nernst effect (ANE), like its Hall counterpart, is generated by Berry curvature of electrons in solids. Little is known about its response to disorder. In contrast, the link between the amplitude of the ordinary Nernst coefficient (ONE) and the mean-free-path is extensively documented. Here, by studying Co3Sn2S2, a topological half-metallic semimetal hosting sizable and recognizable ordinary and anomalous Nernst responses, we demonstrate an anti-correlation between the amplitude of ANE and carrier mobility. We argue that the observation, paradoxically, establishes the intrinsic origin of the ANE in this system. We conclude that various intrinsic off-diagonal coefficients are set by the way the Berry curvature is averaged on a grid involving the mean-free-path, the Fermi wavelength and the de Broglie thermal length.
Large-, medium-, and small-sized granules were separated from normal and high-amylose maize starches using a glycerol centrifugation method. The different-sized fractions of normal maize starch showed similar molecular weight distribution, crystal structure, long- and short-range ordered structure, and lamellar structure of starch, but the different-sized fractions of high-amylose maize starch showed markedly different structural properties. The amylose content, iodine blue value, amylopectin long branch-chain, and IR ratio of 1045/1022 cm(-1) significantly increased with decrease of granule size, but the amylopectin short branch-chain and branching degree, relative crystallinity, IR ratio of 1022/995 cm(-1), and peak intensity of lamellar structure markedly decreased with decrease of granule size for high-amylose maize starch. The large-sized granules of high-amylose maize starch were A-type crystallinity, native and medium-sized granules of high-amylose maize starch were CA-type crystallinity, and small-sized granules of high-amylose maize starch were C-type crystallinity, indicating that C-type starch might contain A-type starch granules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.