The synthesis of spectral remote sensing images of the Earth’s background is affected by various factors such as the atmosphere, illumination and terrain, which makes it difficult to simulate random disturbance and real textures. Based on the shared latent domain hypothesis and generation adversarial network, this paper proposes the SDTGAN method to mine the correlation between the spectrum and directly generate target spectral remote sensing images of the Earth’s background according to the source spectral images. The introduction of shared latent domain allows multi-spectral domains connect to each other without the need to build a one-to-one model. Meanwhile, additional feature maps are introduced to fill in the lack of information in the spectrum and improve the geographic accuracy. Through supervised training with a paired dataset, cycle consistency loss, and perceptual loss, the uniqueness of the output result is guaranteed. Finally, the experiments on the Fengyun satellite observation data show that the proposed SDTGAN method performs better than the baseline models in remote sensing image spectrum translation.
Accurate hyperspectral remote sensing information is essential for feature identification and detection. Nevertheless, the hyperspectral imaging mechanism poses challenges in balancing the trade-off between spatial and spectral resolution. Hardware improvements are cost-intensive and depend on strict environmental conditions and extra equipment. Recent spectral imaging methods have attempted to directly reconstruct hyperspectral information from widely available multispectral images. However, fixed mapping approaches used in previous spectral reconstruction models limit their reconstruction quality and generalizability, especially dealing with missing or contaminated bands. Moreover, data-hungry issues plague increasingly complex data-driven spectral reconstruction methods. This paper proposes SpectralMAE, a novel spectral reconstruction model that can take arbitrary combinations of bands as input and improve the utilization of data sources. In contrast to previous spectral reconstruction techniques, SpectralMAE explores the application of a self-supervised learning paradigm and proposes a masked autoencoder architecture for spectral dimensions. To further enhance the performance for specific sensor inputs, we propose a training strategy by combining random masking pre-training and fixed masking fine-tuning. Empirical evaluations on five remote sensing datasets demonstrate that SpectralMAE outperforms state-of-the-art methods in both qualitative and quantitative metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.