The ability to synthesize and assemble monodispersed core-shell nanoparticles is important for exploring the unique properties of nanoscale core, shell, or their combinations in technological applications. This paper describes findings of an investigation of the synthesis and assembly of core (Fe(3)O(4))-shell (Au) nanoparticles with high monodispersity. Fe(3)O(4) nanoparticles of selected sizes were used as seeding materials for the reduction of gold precursors to produce gold-coated Fe(3)O(4) nanoparticles (Fe(3)O(4)@Au). Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, core-shell composition, surface reactivity, and magnetic properties have confirmed the formation of the core-shell nanostructure. The interfacial reactivity of a combination of ligand-exchanging and interparticle cross-linking was exploited for molecularly mediated thin film assembly of the core-shell nanoparticles. The SQUID data reveal a decrease in magnetization and blocking temperature and an increase in coercivity for Fe(3)O(4)@Au, reflecting the decreased coupling of the magnetic moments as a result of the increased interparticle spacing by both gold and capping shells. Implications of the findings to the design of interfacial reactivities via core-shell nanocomposites for magnetic, catalytic, and biological applications are also briefly discussed.
SUMMARY To systematically investigate innate immune signaling networks regulating production of type I interferon, we analyzed protein complexes formed after microbial recognition. Fifty-eight baits were associated with 260 interacting proteins forming a human innate immunity interactome for type I interferon (HI5) of 401 unique interactions; 21% of interactions were modulated by RNA, DNA, or LPS. Overexpression and depletion analyses identified 22 unique genes that regulated NF-κB and ISRE reporter activity, viral replication, or virus-induced interferon production. Detailed mechanistic analysis defined a role for mind bomb (MIB) E3 ligases in K63-linked ubiquitination of TBK1, a kinase that phosphorylates IRF transcription factors controlling interferon production. Mib genes selectively controlled responses to cytosolic RNA. MIB deficiency reduced antiviral activity, establishing the role of MIB proteins as positive regulators of antiviral responses. The HI5 provides a dynamic physical and regulatory network that serves as a resource for mechanistic analysis of innate immune signaling.
The synthesis of stable, monodisperse, shaped copper nanoparticles has been difficult, partially because of copper's propensity for oxidation. This article reports the findings of an investigation of a synthetic route for the synthesis of size-controllable and potentially shape-controllable molecularly capped copper nanoparticles. The approach involved the manipulation of reaction temperature for the synthesis of copper nanoparticles in organic solvents in the presence of amine and acid capping agents. By manipulating the reaction temperature, this route has been demonstrated for the production of copper nanoparticles ranging from 5 to 25 nm. The size dependence of the melting temperature of copper nanoparticles, especially for surface melting, is believed to play an important role in interparticle coalescence, leading to size growth as the reaction temperature is increased. Control of the reaction temperature and capping molecules has also been demonstrated to produce copper nanoparticles with different shapes such as rods and cubes. The previously proposed combination of the selective formation of a seed precursor and a selective growth direction due to the preferential adsorption of capping agents on certain nanocrystal facets is believed to be responsible for shape formation by kinetically controlling the growth rates of crystal facets. The nanoparticles are characterized using TEM, XRD, and UV-visible techniques. A mechanistic consideration of the size control and shape formation is also discussed.
The immobilization of proteins on gold-coated magnetic nanoparticles and the subsequent recognition of the targeted proteins provide an effective means for the separation of proteins via application of a magnetic filed. A key challenge is the ability to fabricate such nanoparticles with the desired core-shell nanostructure. In this article, we report findings of the fabrication and characterization of gold-coated iron oxide (Fe2O3 and Fe3O4) core@shell nanoparticles (Fe oxide@Au) toward novel functional biomaterials. A hetero-interparticle coalescence strategy has been demonstrated for fabricating Fe oxide@Au nanoparticles that exhibit controllable sizes ranging from 5 to 100 nm and high monodispersity. Composition and surface analyses have proven that the resulting nanoparticles consist of the Fe2O3 core and the Au shell. The magnetically active Fe oxide core and thiolate-active Au shell were shown to be viable for exploiting the Au surface protein-binding reactivity for bioassay and the Fe oxide core magnetism for magnetic bioseparation. These findings are entirely new and could form the basis for fabricating magnetic nanoparticles as biomaterials with tunable size, magnetism, and surface binding properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.