A highly chlorinated flame retardant, Dechlorane Plus (DP), was detected and identified in ambient air, fish, and sediment samples from the Great Lakes region. The identity of this compound was confirmed by comparing its gas chromatographic retention times and mass spectra with those of authentic material. This compound exists as two gas chromatographically separable stereoisomers (syn and anti), the structures of which were characterized by one- and two-dimensional proton nuclear magnetic resonance. DP was detected in most air samples, even at remote sites. The atmospheric DP concentrations were higher at the eastern Great Lakes sites (Sturgeon Point, NY, and Cleveland, OH) than those at the western Great Lakes sites (Eagle Harbor, MI, Chicago, IL, and Sleeping Bear Dunes, MI). Atthe Sturgeon Point site, DP concentrations once reached 490 pg/m3. DP atmospheric concentrations were comparable to those of BDE-209 at the eastern Great Lakes sites. DP was also found in sediment cores from Lakes Michigan and Erie. The peak DP concentrations were comparable to BDE-209 concentrations in the sediment core from Lake Erie butwere about 30 times lower than BDE-209 concentrations in the core from Lake Michigan. In the sediment cores, the DP concentrations peaked around 1975-1980, and the surficial concentrations were 10-80% of peak concentrations. Higher DP concentrations in air samples from Sturgeon Point, NY, and in the sediment core from Lake Erie suggest that DP's manufacturing facility in Niagara Falls, NY, may be a source. DP was also detected in archived fish (walleye) from Lake Erie, suggesting that this compound is, at least partially, bioavailable.
Perfluoroalkyl acids (PFAAs) are persistent and bioaccumulative compounds that have been associated with adverse health outcomes. In human blood, PFAAs exist as both linear and branched isomers, yet for most linear homologues, and for all branched isomers, elimination rates are unknown. Paired blood and urine samples (n = 86) were collected from adults in China. They were analyzed by a sensitive isomer-specific method that permitted the detection of many PFAAs in human urine for the first time. For all PFAAs except perfluoroundecanoate (PFUnA), levels in urine correlated positively with levels in blood. Perfluoroalkyl carboxylates (PFCAs) were excreted more efficiently than perfluoroalkane sulfonates (PFSAs) of the same carbon chain-length. In general, shorter PFCAs were excreted more efficiently than longer ones, but for PFSAs, perfluorooctanesulfonate (PFOS, a C8 compound) was excreted more efficiently than perfluorohexanesulfonate (PFHxS, a C6 compound). Among PFOS and perfluorooctanoate (PFOA) isomers, major branched isomers were more efficiently excreted than the corresponding linear isomer. A one-compartment model was used to estimate the biological elimination half-lives of PFAAs. Among all PFAAs, the estimated arithmetic mean elimination half-lives ranged from 0.5 ± 0.1 years (for one branched PFOA isomer, 5m-PFOA) to 90 ± 11 years (for one branched PFOS isomer, 1m-PFOS). Urinary excretion was the major elimination route for short PFCAs (C ≤ 8), but for longer PFCAs, PFOS and PFHxS, other routes of excretion likely contribute to overall elimination. Urinary concentrations are good biomarkers of the internal dose, and this less invasive strategy can therefore be used in future epidemiological and biomonitoring studies. The very long half-lives of long-chain PFCAs, PFHxS, and PFOS isomers in humans stress the importance of global and domestic exposure mitigation strategies.
Many environmental pollutants inherently exist in their anionic forms and are therefore highly mobile in natural water systems. Cationic framework materials that can capture those pollutants are highly desirable but scarcely reported. Here we present a mesoporous cationic thorium-based MOF (SCU-8) containing channels with a large inner diameter of 2.2 nm and possessing a high surface area of 1360 m2 g−1. The anion-exchange properties of SCU-8 were explored with many anions including small oxo anions like ReO4 − and Cr2O7 2− as well as anionic organic dyes like methyl blue and the persistent organic pollutant, perfluorooctane sulfonate (PFOS). Both fast uptake kinetics and great sorption selectivity toward PFOS are observed. The underlying sorption mechanism was probed using quantum mechanical and molecular dynamics simulations. These computational results reveal that PFOS anions are immobilized in SCU-8 by driving forces including electrostatic interactions, hydrogen bonds, hydrophobic interactions, and van der Waals interactions at different adsorption stages.
Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenolformaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044−2.0049 and 2.0043− 2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O 2 /H 2 O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O 2•− and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.