Photogating detectors based on 2D materials attract significant research interests. However, most of these photodetectors are only sensitive to the incident intensities and lack the ability to distinguish different wavelengths. Color imaging based on these detectors usually requires additional optical filter arrays to collect red, green, and blue (RGB) colors in different photodetectors to restore the true color of one pixel. In this study, an MoS2/HfO2/silicon‐on‐insulator field effect phototransistor with wavelength distinguishing ability is presented, where the photogating effect can be simultaneously formed in the top MoS2 gate and bottom Si substrate gate. These two individual photogating effects can reduce and increase the read current in the middle 12 nm Si channel, respectively. Thus, by tuning the applied voltages on these two gates, the device can be used to obtain tunable ambipolar photoresponsivity from +7000 A W−1 (Si bottom gate dominated) to 0 A W−1 (balanced), and finally to −8000 A W−1 (MoS2 gate dominated). In addition, the experimental results show that the corresponding top gate voltage to the zero responsivity (0 A W−1) point can be positively shifted by the increasing of incident wavelength with high resolution up to 2 nm and is insensitive to the incident intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.