Escherichia coli (E. coli) is closely associated with the formation of kidney stones. However, the role of E. coli in CaOx stone formation is not well understood. We explored whether E. coli facilitate CaOx stone formation and its mechanism. Stone and urine cultures were reviewed from kidney stone formers. The ability of calcium oxalate monohydrate (COM) aggregation was detected to evaluate the influence of uropathogenic E. coli, then gel electrophoresis and nanoLC-MS/MS to detect the crystal-adhered protein. Flagellin (Flic) and polyphosphate kinase 1 (PPK1) were screened out following detection of their role on crystal aggregation, oxidative injury, and inflammation of HK-2 cell in vitro. By transurethral injection of wild-type, Ppk1 mutant and Flic mutant strains of E. coli and intraperitoneally injected with glyoxylate in C57BL/6J female mice to establish an animal model. We found that E. coli was the most common bacterial species in patients with CaOx stone. It could enhance CaOx crystal aggregation both in vitro and in vivo. Flagellin was identified as the key molecules regulated by PPK1, and both of them could facilitate the crystal aggregation and mediated HK-2 cell oxidative injury and activated the inflammation-related NF-κB/P38 signaling pathway. Wild-type strain of E. coli injection significantly increased CaOx deposition and enhanced oxidative injury and inflammation-related protein expression, and this effect could be reversed by Ppk1 or Flic mutation. In conclusion, E. coli promotes CaOx stone formation via enhancing oxidative injury and inflammation regulated by the PPK1/flagellin, which activated NF-κB/P38 pathways, providing new potential drug targets for the renal CaOx calculus precaution and treatment.
Bladder cancer is the 11th most common cancer in the world. Bladder cancer can be roughly divided into muscle invasive bladder cancer (MIBC) and non-muscle invasive bladder cancer (NMIBC). The aim of the present study was to identify the key genes and pathways associated with the progression of NMIBC to MIBC and to further analyze its molecular mechanism and prognostic significance. We analyzed microarray data of NMIBC and MIBC gene expression datasets (GSE31684) listed in the Gene Expression Omnibus (GEO) database. After the dataset was analyzed using R software, differentially expressed genes (DEGs) of NMIBC and MIBC were identified. These DEGs were analyzed using Gene Ontology (GO) enrichment, KOBAS-Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein–protein interaction (PPI) analysis. The effect of these hub genes on the survival of bladder cancer patients was analyzed in The Cancer Genome Atlas (TCGA) database. A total of 389 DEGs were obtained, of which 270 were up-regulated and 119 down-regulated. GO and KEGG pathway enrichment analysis revealed that DEGs were mainly involved in the pathway of protein digestion and absorption, extracellular matrix (ECM) receiver interaction, phantom, toll-like receptor (TLR) signaling pathway, focal adhesion, NF-κB signaling pathway, PI3K/Akt signaling pathway, and other signaling pathways. Top five hub genes COL1A2, COL3A1, COL5A1, POSTN, and COL12A1 may be involved in the development of MIBC. These results may provide us with a further understanding of the occurrence and development of MIBC, as well as new targets for the diagnosis and treatment of MIBC in the future.
Escherichia coli (E. coli) strains cause the majority of urinary tract infections (UTIs) and are resistant to various antibiotics. Therefore, it is imperative to explore novel host-target therapies. As a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.