Endothelial dysfunction (ED) is an important contributor to atherosclerotic cardiovascular disease. Our previous study demonstrated that sphingomyelin synthase 2 (SMS2) promotes ED. Moreover, endoplasmic reticulum (ER) stress can lead to ED. However, whether there is a correlation between SMS2 and ER stress is unclear. To examine their correlation and determine the detailed mechanism of this process, we constructed a human umbilical vein endothelial cell (HUVEC) model with SMS2 overexpression. These cells were treated with 4-PBA or simvastatin and with LiCl and salinomycin alone. The results showed that SMS2 can promote the phosphorylation of lipoprotein receptor-related protein 6 (LRP6) and activate the Wnt/β-catenin pathway and that activation or inhibition of the Wnt/β-catenin pathway can induce or block ER stress, respectively. However, inhibition of ER stress by 4-PBA can decrease ER stress and ED. Furthermore, when the biosynthesis of cholesterol is inhibited by simvastatin, the reduction in intracellular cholesterol coincides with a decrease in ER stress and ED. Collectively, our results demonstrate that SMS2 can activate the Wnt/β-catenin pathway and promote intracellular cholesterol accumulation, both of which can contribute to the induction of ER stress and finally lead to ED.
Atherosclerosis (AS) is the primary cause of various cardiovascular and cerebrovascular diseases and has high morbidity and mortality rates. Oxidative stress-induced endothelial cells (ECs) dysfunction is the pathological basis of AS. In addition, sphingomyelin (SM) and the Wnt/β-catenin signaling pathway are considered to be closely associated with AS; however, the specific mechanism is not clear. Therefore, the present study investigated whether SM may induce ECs dysfunction through the Wnt/β-catenin signaling pathway. Firstly, a sphingomyelin synthase 2 (SMS2) overexpression cell model was constructed. It was identified that the expression of SMS2 was increased when ECs were treated with H2O2. In addition, these results demonstrated that SMS2 overexpression promoted apoptosis and macrophage adhesion of H2O2-induced ECs, thereby increasing the expression of β-catenin. Furthermore, SMS activity was inhibited with Dy105, combined with simultaneous treatment with LiCl or H2O2. This additionally confirmed that Dy105 significantly inhibited SMS activity and decreased the level of ECs dysfunction and β-catenin content; however, LiCl served a key role in activating the Wnt/β-catenin signaling pathway to promote ECs dysfunction. Collectively, these results suggested that SMS2 overexpression may promote ECs dysfunction by activating the Wnt/β-catenin signaling pathway, while Dy105 may inhibit the evolution of oxidative stress-induced dysfunction.
Atherosclerosis is a major pathogenic factor in patients with cardiovascular diseases, and endothelial dysfunction (Ed) plays a primary role in its occurrence and development. Simvastatin is a lipid-lowering drug, which is commonly used to prevent or treat risk factors of cardiovascular diseases with a significant anti-atherogenic effect. However, its impact on endothelial cells under conditions of oxidative stress and broader mechanisms of action remain unclear. The present study evaluated the effect of simvastatin on human umbilical vein endothelial cells (HUVECs) under oxidative stress with H 2 O 2, and the associated mechanisms. At a high dose (1 µM), simvastatin exacerbated H 2 O 2-induced endothelial cell dysfunction. Moreover, inhibition of the Wnt/β-catenin pathway by salinomycin significantly suppressed the simvastatin-associated HUVEC dysfunction. Western blot analysis further demonstrated that simvastatin promoted the phosphorylation of low-density lipoprotein receptor-related protein 6 (LRP6) and activated the Wnt/β-catenin pathway. Simvastatin also activated endoplasmic reticulum (ER) stress, which was reversed by salinomycin treatment. Based on these results, it was hypothesized that simvastatin may promote ER stress by facilitating LRP6 phosphorylation and the subsequent activation of the Wnt/β-catenin pathway, thereby enhancing H 2 O 2-induced Ed. Therefore, high-dose simvastatin treatment could have potential toxic side effects, indicating the need for close clinical management, monitoring and patient selection.
Atherosclerosis is the pathological basis of cardiovascular disease, whilst endothelial dysfunction (ED) plays a primary role in the occurrence and development of atherosclerosis. Simvastatin has been shown to possess significant anti-atherosclerosis activity. In this study, we evaluated the protective effect of simvastatin on endothelial cells under oxidative stress and elucidated its underlying mechanisms. Simvastatin was found to attenuate H2O2-induced human umbilical vein endothelial cells (HUVECs) dysfunction and inhibit the Wnt/β-catenin pathway; however, when this pathway was activated by lithium chloride, endothelial dysfunction was clearly enhanced. Further investigation revealed that simvastatin did not alter the expression or phosphorylation of LRP6, but reduced intracellular cholesterol deposition and inhibited endoplasmic reticulum (ER) stress. Inducing ER stress with tunicamycin activated the Wnt/β-catenin pathway, whereas reducing ER stress with 4-phenylbutyric acid inhibited it. We hypothesize that simvastatin does not affect transmembrane signal transduction in the Wnt/β-catenin pathway, but inhibits ER stress by reducing intracellular cholesterol accumulation, which blocks intracellular signal transduction in the Wnt/β-catenin pathway and ameliorates endothelial dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.