Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots.
Glutathione is overexpressed in tumor cells and regulates cancer growth, metastasis, and drug resistance. Therefore, detecting glutathione levels may greatly facilitate cancer diagnosis and treatment response monitoring. Photoacoustic (PA) imaging is a noninvasive modality for highsensitivity, high-resolution, deep-tissue optical imaging. Switchable PA probes that offer signal on/off responses to tumor targets would further improve the detection sensitivity and signal-to-noise ratio of PA imaging. Here, we explore the use of MnO 2 nanotubes as a switchable and biodegradable PA probe for dynamic imaging of glutathione in cancer. Glutathione reduces black MnO 2 nanotubes into colorless Mn 2+ ions, leading to decreased and signal off PA amplitude. In phantoms, we observed a linear response of reduced PA signals of MnO 2 nanotubes to increased glutathione concentrations. Using melanoma as the disease model, we demonstrated that MnO 2 nanotube-based PA imaging of glutathione successfully distinguished B16F10 melanoma cells from BEAS-2B normal cells and discriminated B16F10 tumors from healthy skin tissues. Our results showed that MnO 2 nanotubes are a potent switchable and biodegradable PA probe for glutathione imaging in cancer diagnosis.
A zwitterionic polymer-drug conjugate (ZPDC) strategy is developed for the co-delivery of paclitaxel (PTX) and gemcitabine (GEM) chemotherapeutics, as well as a near-infrared fluorescence imaging agent cyanine5.5 (Cy5.5). The well-defined...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.