The outlook for patients with refractory/relapsed acute myeloid leukemia (AML) remains poor, with conventional chemotherapeutic treatments often associated with unacceptable toxicities, including severe infections due to profound myelosuppression. Thus there exists an urgent need for more effective agents to treat AML that confer high therapeutic indices and favorable tolerability profiles. Because of its high expression on leukemic blast and stem cells compared with normal hematopoietic stem cells and progenitors, CD123 has emerged as a rational candidate for molecularly targeted therapeutic approaches in this disease. Here we describe the development and preclinical characterization of a CD123-targeting antibody-drug conjugate (ADC), IMGN632, that comprises a novel humanized anti-CD123 antibody G4723A linked to a recently reported DNA mono-alkylating payload of the indolinobenzodiazepine pseudodimer (IGN) class of cytotoxic compounds. The activity of IMGN632 was compared with X-ADC, the ADC utilizing the G4723A antibody linked to a DNA crosslinking IGN payload. With low picomolar potency, both ADCs reduced viability in AML cell lines and patient-derived samples in culture, irrespective of their multidrug resistance or disease status. However, X-ADC exposure was >40-fold more cytotoxic to the normal myeloid progenitors than IMGN632. Of particular note, IMGN632 demonstrated potent activity in all AML samples at concentrations well below levels that impacted normal bone marrow progenitors, suggesting the potential for efficacy in AML patients in the absence of or with limited myelosuppression. Furthermore, IMGN632 demonstrated robust antitumor efficacy in multiple AML xenograft models. Overall, these findings identify IMGN632 as a promising candidate for evaluation as a novel therapy in AML.
Previous work showed that random mutagenesis produced a mutant of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 containing the V106A substitution in the hydroxylase alpha-subunit (TomA3) that changed the color of the cell suspension from wild-type brown to green in rich medium. Here, DNA shuffling was used to isolate a random TOM mutant that turned blue due to mutation TomA3 A113V. To better understand the TOM reaction mechanism, we studied the specificity of indole hydroxylation using a spectrum of colored TOM mutants expressed in Escherichia coli TG1 and formed as a result of saturation mutagenesis at TomA3 positions A113 and V106. Colonies expressing these altered enzymes ranged in color from blue through green and purple to orange; and the enzyme products were identified using thin-layer chromatography, high performance liquid chromatography, and liquid chromatography-mass spectroscopy. Derived from the single TOM template, enzymes were identified that produced primarily isoindigo (wild-type TOM), indigo (A113V), indirubin (A113I), and isatin (A113H and V106A/A113G). The discovery that wild-type TOM formed isoindigo via C-2 hydroxylation of the indole pyrrole ring makes this the first oxygenase shown to form this compound. Variant TOM A113G was unable to form indigo, indirubin, or isoindigo (did not hydroxylate the indole pyrrole ring), but produced 4-hydroxyindole and unknown yellow compounds from C-4 hydroxylation of the indole benzene ring. Mutations at V106 in addition to A113G restored C-3 indole oxidation, so along with C-2 indole oxidation, isatin, indigo, and indirubin were formed. Other TomA3 V106/A113 mutants with hydrophobic, polar, or charged amino acids in place of the Val and/or Ala residues hydroxylated indole at the C-3 and C-2 positions, forming isatin, indigo, and indirubin in a variety of distributions. Hence, for the first time, a single enzyme was genetically modified to produce a wide range of colors from indole.
Directed evolution of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 previously created the hydroxylase ␣-subunit (TomA3) V106A variant (TOM-Green) with increased activity for both trichloroethylene degradation (twofold enhancement) and naphthalene oxidation (six-times-higher activity). In the present study, saturation mutagenesis was performed at position A106 with Escherichia coli TG1/pBS(Kan)TOMV106A to improve TOM activity for both chloroform degradation and naphthalene oxidation. Whole cells expressing the A106E variant had two times better naphthalene-to-1-naphthol activity than the wild-type cells (V max of 9.3 versus 4.5 nmol ⅐ min ؊1 ⅐ mg of protein ؊1 and unchanged K m ), and the regiospecificity of the A106E variant was unchanged, with 98% 1-naphthol formed, as was confirmed with high-pressure liquid chromatography. The A106E variant degrades its natural substrate toluene 63% faster than wild-type TOM does (2.12 ؎ 0.07 versus 1.30 ؎ 0.06 nmol ⅐ min ؊1 ⅐ mg of protein ؊1 [mean ؎ standard deviation]) at 91 M and has a substantial decrease in regiospecificity, since o-cresol (50%), m-cresol (25%), and p-cresol (25%) are formed, in contrast to the 98% o-cresol formed by wild-type TOM. The A106E variant also has an elevated expression level compared to that of wild-type TOM, as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Another variant, the A106F variant, has 2.8-times-better chloroform degradation activity based on gas chromatography (V max of 2.61 versus 0.95 nmol ⅐ min ؊1 ⅐ mg of protein ؊1 and unchanged K m ) and chloride release (0.034 ؎ 0.002 versus 0.012 ؎ 0.001 nmol ⅐ min ؊1 ⅐ mg of protein ؊1 ). The A106F variant also was expressed at levels similar to those of wild-type TOM and 62%-better toluene oxidation activity than wild-type TOM (2.11 ؎ 0.3 versus 1.30 ؎ 0.06 nmol ⅐ min ؊1 ⅐ mg of protein ؊1 ). A shift in regiospecificity of toluene hydroxylation was also observed for the A106F variant, with o-cresol (28%), m-cresol (18%), and p-cresol (54%) being formed. Statistical analysis was used to estimate that 292 colonies must be screened for a 99% probability that all 64 codons were sampled during saturation mutagenesis.Toluene ortho-monooxygenase (TOM) is encoded by the Burkholderia cepacia G4 gene cluster tomA012345 (33) and belongs to an evolutionarily related family of nonheme diiron hydroxylases found in a wide range of bacteria (16). Examples of the family include soluble methane monooxygenase (sMMO) from methanotrophic bacteria (6, 37) as well as other toluene monooxygenases, such as toluene 4-monooxygenase from Pseudomonas mendocina KR1 (40), toluene 3-monooxygenase from Ralstonia pickettii PKO1 (23), and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1 (1). TOM is a three-component complex consisting of a 211-kDa hydroxylase (tomA1A3A4) with two binuclear iron centers in the (␣␥) 2 quaternary structure, a 40-kDa NADH-oxidoreductase (tomA5), and a 10.4-kDa regulatory protein (tomA2) involved in the electron transfer between the hydroxy...
Chlorinated ethenes are the most prevalent groundwater pollutants, and the toxic epoxides generated during their aerobic biodegradation limit the extent of transformation. Hydrolysis of the toxic epoxide by epoxide hydrolases represents the major biological detoxification strategy; however, chlorinated epoxyethanes are not accepted by known bacterial epoxide hydrolases. Here, the epoxide hydrolase from Agrobacterium radiobacter AD1 (EchA), which enables growth on epichlorohydrin, was tuned to accept cis-1,2-dichloroepoxyethane as a substrate by accumulating beneficial mutations from three rounds of saturation mutagenesis at three selected active site residues, Phe-108, Ile-219, and Cys-248 (no beneficial mutations were found at position Ile-111). The EchA F108L/I219L/C248I variant coexpressed with a DNA-shuffled toluene ortho-monooxygenase, which initiates attack on the chlorinated ethene, enhanced the degradation of cis-dichloroethylene (cis-DCE) an infinite extent compared with wildtype EchA at low concentrations (6.8 M) and up to 10-fold at high concentrations (540 M). EchA variants with single mutations (F108L, I219F, or C248I) enhanced cis-DCE mineralization 2.5-fold (540 M), and EchA variants with double mutations, I219L/C248I and F108L/C248I, increased cis-DCE mineralization 4-and 7-fold, respectively (540 M). For complete degradation of cis-DCE to chloride ions, the apparent V max /K m for the recombinant Escherichia coli strain expressing the EchA F108L/ I219L/C248I variant was increased over 5-fold as a result of the evolution of EchA. The EchA F108L/I219L/C248I variant also had enhanced activity for 1,2-epoxyhexane (2-fold) and the natural substrate epichlorohydrin (6-fold).
Aerobic, co-metabolic bioremediation of trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE) and other chlorinated ethenes with monooxygenase-expressing microorganisms is limited by the toxic epoxides produced as intermediates. A recombinant Escherichia coli strain less sensitive to the toxic effects of cis-DCE, TCE and trans-1,2-dichloroethylene (trans-DCE) degradation has been created by engineering a novel pathway consisting of eight genes including a DNA-shuffled toluene ortho-monooxygenase from Burkholderia cepacia G4 (TOM-Green), a newly discovered glutathione S-transferase (GST) from RhodococcusAD45 (IsoILR1), found to have activity towards epoxypropane and cis-DCE epoxide, and an overexpressed E. coli mutant gamma-glutamylcysteine synthetase (GSHI*). Along with IsoILR1, another new RhodococcusAD45 GST, IsoILR2, was cloned that lacks activity towards cis-DCE epoxide and differs from IsoILR1 by nine amino acids. The recombinant strain in which TOM-Green and IsoILR1 were co-expressed on separate plasmids degraded 1.9-fold more cis-DCE compared with a strain that lacked IsoILR1. In the presence of IsoILR1 and TOM-Green, the addition of GSH1* resulted in a sevenfold increase in the intracellular GSH concentration and a 3.5-fold improvement in the cis-DCE degradation rate based on chloride released (2.1 +/- 0.1 versus 0.6 +/- 0.1 nmol min(-1) mg(-1) protein at 540 microM), a 1.8-fold improvement in the trans-DCE degradation rate (1.29 +/- 0.03 versus 0.71 +/- 0.04 nmol x min(-1) mg(-1) protein at 345 microM) and a 1.7-fold improvement in the TCE degradation rate (6.8 +/- 0.24 versus 4.1 +/- 0.16 nmol x min(-1) mg(-1) protein at 339 microM). For cis-DCE degradation with TOM-Green (based on substrate depletion), V(max) was 27 nmol x min(-1) mg(-1) protein with both IsoILR1 and GSHI* expressed compared with V(max) = 10 nmol x min(-1) mg(-1) protein for the GST(-)GSHI*(-) strain. In addition, cells expressing IsoILR1 and GSHI* grew 78% faster in rich medium than a strain lacking these two heterologous genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.