SUMMARYMany steady-state models of polymer electrolyte membrane fuel cells (PEMFC) have been developed and published in recent years. However, models which are easy to be solved and feasible for engineering applications are few. Moreover, rarely the methods for parameter optimization of PEMFC stack models were discussed. In this paper, an electrochemical-based fuel cell model suitable for engineering optimization is presented. Parameters of this PEMFC model are determined and optimized by means of a niche hybrid genetic algorithm (HGA) by using stack output-voltage, stack demand current, anode pressure and cathode pressure as input-output data. This genetic algorithm is a modified method for global optimization. It provides a new architecture of hybrid algorithms, which organically merges the niche techniques and Nelder-Mead's simplex method into genetic algorithms (GAs). Calculation results of this PEMFC model with optimized parameters agreed with experimental data well and show that this model can be used for the study on the PEMFC steady-state performance, is broader in applicability than the earlier steady-state models. HGA is an effective and reliable technique for optimizing the model parameters of PEMFC stack.
Truss optimization on shape and sizing with frequency constraints are highly nonlinear dynamic optimization problems. Coupling of two different types of design variables, nodal coordinates and cross-sectional areas, often lead to divergence while multiple frequency constraints often cause difficult dynamic sensitivity analysis. So optimal criteria method and mathematical programming, which need complex dynamic sensitivity and are easily trapped into the local optima, are difficult to solve the problems. To solve the truss shape and sizing optimization simply and effectively, a Niche Hybrid Genetic Algorithm (NHGA) is proposed. The objective of NHGA is to enhance the exploitation capacities while preventing the premature convergence simultaneously based on the new hybrid architecture. Niche techniques and adaptive parameter adjustment are used to maintain population diversity for preventing the premature convergence while simplex search is used to enhance the local search capacities of GAs. The proposed algorithm effectively alleviates premature convergence and improves weak exploitation capacities of GAs. Several typical truss optimization examples are employed to demonstrate the validity, availability and reliability of NHGA for solving shape and sizing optimization of trusses with multiple frequency constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.