Smart wearable robotic system, such as exoskeleton assist device and powered lower limb prostheses can rapidly and accurately realize man–machine interaction through locomotion mode recognition system. However, previous locomotion mode recognition studies usually adopted more sensors for higher accuracy and effective intelligent algorithms to recognize multiple locomotion modes simultaneously. To reduce the burden of sensors on users and recognize more locomotion modes, we design a novel decision tree structure (DTS) based on using an improved backpropagation neural network (IBPNN) as judgment nodes named IBPNN-DTS, after analyzing the experimental locomotion mode data using the original values with a 200-ms time window for a single inertial measurement unit to hierarchically identify nine common locomotion modes (level walking at three kinds of speeds, ramp ascent/descent, stair ascent/descent, Sit, and Stand). In addition, we reduce the number of parameters in the IBPNN for structure optimization and adopted the artificial bee colony (ABC) algorithm to perform global search for initial weight and threshold value to eliminate system uncertainty because randomly generated initial values tend to result in a failure to converge or falling into local optima. Experimental results demonstrate that recognition accuracy of the IBPNN-DTS with ABC optimization (ABC-IBPNN-DTS) was up to 96.71% (97.29% for the IBPNN-DTS). Compared to IBPNN-DTS without optimization, the number of parameters in ABC-IBPNN-DTS shrank by 66% with only a 0.58% reduction in accuracy while the classification model kept high robustness.
A three-dimensional motion capture system is a useful tool for analysing gait patterns during walking or exercising, and it is frequently applied in biomechanical studies. However, most of them are expensive. This study designs a low-cost gait detection system with high accuracy and reliability that is an alternative method/equipment in the gait detection field to the most widely used commercial system, the virtual user concept (Vicon) system. The proposed system integrates mass-produced low-cost sensors/chips in a compact size to collect kinematic data. Furthermore, an x86 mini personal computer (PC) running at 100 Hz classifies motion data in real-time. To guarantee gait detection accuracy, the embedded gait detection algorithm adopts a multilayer perceptron (MLP) model and a rule-based calibration filter to classify kinematic data into five distinct gait events: heel-strike, foot-flat, heel-off, toe-off, and initial-swing. To evaluate performance, volunteers are requested to walk on the treadmill at a regular walking speed of 4.2 km/h while kinematic data are recorded by a low-cost system and a Vicon system simultaneously. The gait detection accuracy and relative time error are estimated by comparing the classified gait events in the study with the Vicon system as a reference. The results show that the proposed system obtains a high accuracy of 99.66% with a smaller time error (32 ms), demonstrating that it performs similarly to the Vicon system in the gait detection field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.