Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/platinum (Pt) catalysts (where M can be nickel, cobalt, or iron). We report on a class of platinum-lead/platinum (PtPb/Pt) core/shell nanoplate catalysts that exhibit large biaxial strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere (mA) per centimeter squared and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations reveal that the edge-Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-O bond strength. The intermetallic core and uniform four layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.
Despite intense research in past decades, the lack of high-performance catalysts for fuel cell reactions remains a challenge in realizing fuel cell technologies for transportation applications. Here we report a facile strategy for synthesizing hierarchical platinum-cobalt nanowires with high-index, platinum-rich facets and ordered intermetallic structure. These structural features enable unprecedented performance for the oxygen reduction and alcohol oxidation reactions. The specific/mass activities of the platinum-cobalt nanowires for oxygen reduction reaction are 39.6/33.7 times higher than commercial Pt/C catalyst, respectively. Density functional theory simulations reveal that the active threefold hollow sites on the platinum-rich high-index facets provide an additional factor in enhancing oxygen reduction reaction activities. The nanowires are stable in the electrochemical conditions and also thermally stable. This work may represent a key step towards scalable production of high-performance platinum-based nanowires for applications in catalysis and energy conversion.
An unconventional class of high-performance Pt alloy multimetallic nanowires (NWs) is produced by a general method. The obtained PtNi NWs exhibit amazingly specific and mass oxygen reduction reaction (ORR) activities with improvement factors of 51.1 and 34.6 over commercial Pt/C catalysts, respectively, and are also stable in ORR conditions, making them among the most efficient electrocatalysts for ORR.
High-entropy alloys (HEAs) with unique physicochemical properties have attracted tremendous attention in many fields, yet the precise control on dimension and morphology at atomic level remains formidable challenges. Herein, we synthesize unique PtRuNiCoFeMo HEA subnanometer nanowires (SNWs) for alkaline hydrogen oxidation reaction (HOR). The mass and specific activities of HEA SNWs/C reach 6.75 A mgPt+Ru−1 and 8.96 mA cm−2, respectively, which are 2.8/2.6, 4.1/2.4, and 19.8/18.7 times higher than those of HEA NPs/C, commercial PtRu/C and Pt/C, respectively. It can even display enhanced resistance to CO poisoning during HOR in the presence of 1000 ppm CO. Density functional theory calculations reveal that the strong interactions between different metal sites in HEA SNWs can greatly regulate the binding strength of proton and hydroxyl, and therefore enhances the HOR activity. This work not only provides a viable synthetic route for the fabrication of Pt-based HEA subnano/nano materials, but also promotes the fundamental researches on catalysis and beyond.
Highly open metallic nanoframes represent an emerging class of new nanostructures for advanced catalytic applications due to their fancy outline and largely increased accessible surface area. However, to date, the creation of bimetallic nanoframes with tunable structure remains a challenge. Herein, we develop a simple yet efficient chemical method that allows the preparation of highly composition segregated Pt-Ni nanocrystals with controllable shape and high yield. The selective use of dodecyltrimethylammonium chloride (DTAC) and control of oleylamine (OM)/oleic acid (OA) ratio are critical to the controllable creation of highly composition segregated Pt-Ni nanocrystals. While DTAC mediates the compositional anisotropic growth, the OM/OA ratio controls the shapes of the obtained highly composition segregated Pt-Ni nanocrystals. To the best of our knowledge, this is the first report on composition segregated tetrahexahedral Pt-Ni NCs. Importantly, by simply treating the highly composition segregated Pt-Ni nanocrystals with acetic acid overnight, those solid Pt-Ni nanocrystals can be readily transformed into highly open Pt-Ni nanoframes with hardly changed shape and size. The resulting highly open Pt-Ni nanoframes are high-performance electrocatalysts for both oxygen reduction reaction and alcohol oxidations, which are far better than those of commercial Pt/C catalyst. Our results reported herein suggest that enhanced catalysts can be developed by engineering the structure/composition of the nanocrystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.