Context
Sanziguben (SZGB) is an empirical prescription used in traditional Chinese medicine to treat diabetic nephropathy (DN). As an abundant and primarily effective component of SZGB, Sanziguben polysaccharides (SZP) can be digested by flora to generate biological activity.
Objective
Our study aimed to clarify the potential mechanism of SZP in improving chronic DN.
Materials and methods
Male db/db mice were randomized into DN, SZP (500 mg/kg) and metformin (MET, 300 mg/kg) groups. Wild-type littermates served as the normal control (NC) group. The drug was orally administered for 8 weeks. Enzyme-linked immunosorbent assay was used to detect the inflammatory factors. Proteins related to inflammation were evaluated using western blotting and immunohistochemical examination. Gut microbiota was analysed using 16S rRNA sequencing.
Results
SZP significantly reduced 24 h urine albumin (
p
< 0.05) of DN mice. Compared to DN group, SZP significantly decreased the homeostasis model assessment of insulin resistance index, serum creatinine and blood urea nitrogen levels (20.27 ± 3.50 vs. 33.64 ± 4.85, 19.22 ± 3.77 vs. 32.52 ± 3.05 μmol/L, 13.23 ± 1.42 vs. 16.27 ± 0.77 mmol/L, respectively), and mitigated renal damage. SZP also regulated gut microbiota and decreased the abundance of Gram-negative bacteria (Proteobacteria,
Klebsiella
and
Escherichia-Shigella
). Subsequently, SZP reduced lipopolysaccharides levels (1.06- to 1.93-fold) of DN mice. Furthermore, SZP inhibited the expression levels of TLR4, phospho-NF-κB p65, NLRP3 proteins and interleukin (IL)-18 and IL-1β.
Conclusions
These results demonstrated that SZP improved intestinal flora disorder and inhibited the TLR4/NF-κB/NLRP3 pathway to alleviate DN.
One of the main issues faced by nervous system diseases is that drugs are difficult to enter the brain. The previous study suggested that Cyclovirobuxine D (CVBD) encapsulated in Angiopep-conjugated Polysorbate 80-Coated Liposomes showed a better brain targeting by intranasal administration.
Therefore, this study concentrated on the protection and mechanism of CVBD brain-targeted liposomes in treating CIRI. Middle cerebral artery occlusion-reperfusion induced CIRI model rats to explore the protective effect of CVBD brain-targeted liposome on CIRI. Moreover, the protective effect
of CVBD liposomes on OGD/R-injured HT22 cells was examined by cell fusion degree, cell proliferation curve and cell viability. OGD/R-injured HT22 cell was infected by mRFP-GFP-LC3 adenovirus. The autophagosome and autophagy flow were observed by laser confocal microscopy, and autophagy-related
protein expressions were analyzed by Western blot. The classic autophagy inhibitor, chloroquine, was used to explore the autophagy-regulatedmechanism of CVBD brain-targeted liposomes in treating CIRI. CVBD liposomes increased cell viability and decreased ROS level, improved oxidative stress
protein expressions and activated autophagy in vitro. Furthermore, CVBD liposomes reversed the decrease of cell viability, increase of ROS level, and reduction of protein expressions associated with anti-oxidative stress and autophagy induced by chloroquine. Collectively, CVBD liposomes
inhibited CIRI via regulating oxidative stress and enhancing autophagy level in vivo and in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.