Sepsis is life-threatening and often leads to acute brain damage. Dexmedetomidine, an α2-adrenoceptor agonist, has been reported to possess neuroprotective effects against various brain injury but underlying mechanisms remain elusive. In this study, in vitro and in vivo models of sepsis were used to explore the effects of dexmedetomidine on the inflammasome activity and its associated glia pyroptosis and neuronal death. In vitro, inflammasome activation and pyroptosis were found in astrocytes following lipopolysaccharide (LPS) exposure. Dexmedetomidine significantly alleviated astrocyte pyroptosis and inhibited histone release induced by LPS. In vivo, LPS treatment in rats promoted caspase-1 immunoreactivity in astrocytes and caused an increase in the release of pro-inflammatory cytokines of IL-1β and IL-18, resulting in neuronal injury, which was attenuated by dexmedetomidine; this neuroprotective effect was abolished by α2-adrenoceptor antagonist atipamezole. Dexmedetomidine significantly reduced the high mortality rate caused by LPS challenge. Our data demonstrated that dexmedetomidine may protect glia cells via reducing pyroptosis and subsequently protect neurons, all of which may preserve brain function and ultimately improve the outcome in sepsis.
General anesthetics are commonly used in major surgery. To achieve the depth of anesthesia for surgery, patients are being subjected to a variety of general anesthetics, alone or in combination. It has been long held an illusory concept that the general anesthesia is entirely reversible and that the central nervous system is returned to its pristine state once the anesthetic agent is eliminated from the active site. However, studies indicate that perturbation of the normal functioning of these targets may result in long-lasting desirable or undesirable effects. This review focuses on the impact of general anesthetic exposure to the brain and summarizes the molecular and cellular mechanisms by which general anesthetics may induce long-lasting undesirable effects when exposed at the developing stage of the brain. The vulnerability of aging brain to general anesthetics, specifically in the context of cognitive disorders and Alzheimer’s disease pathogeneses are also discussed. Moreover, we will review emerging evidence regarding the neuroprotective property of xenon and anesthetic adjuvant dexmedetomidine in the immature and mature brains. In conclusion, “mixed picture” effects of general anesthetics should be well acknowledged and should be implemented into daily clinical practice for better patient outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.