Under the action of extreme wind load, the overhead transmission line will lead to the fracture of the traditional V-type insulator string, which greatly affects the safety of the power system. Compared with the V-type insulator string, the Y-type insulator string has better stability under the wind load. Therefore, the overhead lines in the mountainous areas of Anhui Province are taken as the research object, considering the combined effect of wind load and conductor dead weight, and through theoretical derivation, the calculation formula of insulator string wind deflection angle is obtained. Using numerical simulation software, the nonlinear mechanical analysis of Y-type insulator strings is conducted, and under the action of different wind speeds, the windage yaw angle and unloading angle of the Y-type insulator string are obtained. Compared with the calculation results of the V-type insulator string, the stability of the Y-type insulator string in the structure is better than that of the V-type insulator string, and the Y-type insulator string can make full use of the distance between layers and the gap margin of the tower head, reduce the length of the cross arm, and reduce the weight of the tower, which has obvious advantages. Combined with the results of theoretical analysis and numerical simulation, the optimal design method of the Y-type insulator string is given. Under the condition of ensuring the safety and stability of insulators, the distance of the cross arm is shortened as much as possible and the weight of the transmission line tower is reduced. The research results will provide a theoretical reference for engineering design and improvement.
In order to improve the accuracy of lightning strike fault location and identification based on the distributed traveling wave monitoring system and lightning location system, the location algorithm and recognition algorithm are improved and integrated. The distributed traveling wave monitoring device is regarded as the lightning detection sub-station, and the calculation results of the lightning location system are corrected to get the accurate lightning flashover tower position. The lightning flashover voltage of the positioning tower is calculated based on the lightning current amplitude and the procedure method. After the lightning fault type is predetermined, the recognition calculation based on waveform feature extraction can be carried out. The actual lightning tripping fault and waveform were used to verify, the results show that the proposed method can effectively improve the accuracy of lightning strike fault location and identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.