Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.
Integrins are membrane receptors mediating cell adhesion and mechanosensing. The structure-function relationship of integrins remains incompletely understood, despite the extensive studies due to its importance to basic cell biology and translational medicine. Using fluorescence dual biomembrane force probe, microfluidics and cone-and-plate rheometry, we applied precisely-controlled mechanical stimulations to platelets and identified an intermediate state of integrin α IIb β 3 , which is characterized by an ectodomain conformation, ligand affinity and bond lifetimes that are all intermediate between the well-known inactive and active states. This intermediate state is induced by ligand engagement of GPIbα via a mechano-signaling pathway and potentiates the outside-in mechano-signaling of α IIb β 3 for further transition to the active state during integrin mechanical affinity maturation. Our work reveals distinct α IIb β 3 state transitions in response to biomechanical and biochemical stimuli, and identifies a role for the α IIb β 3 intermediate state in promoting biomechanical platelet aggregation.
A sparse precision matrix can be directly translated into a sparse Gaussian graphical model under the assumption that the data follow a joint normal distribution. This neat property makes high-dimensional precision matrix estimation very appealing in many applications. However, in practice we often face nonnormal data, and variable transformation is often used to achieve normality. In this paper we consider the nonparanormal model that assumes that the variables follow a joint normal distribution after a set of unknown monotone transformations. The nonparanormal model is much more flexible than the normal model while retaining the good interpretability of the latter in that each zero entry in the sparse precision matrix of the nonparanormal model corresponds to a pair of conditionally independent variables. In this paper we show that the nonparanormal graphical model can be efficiently estimated by using a rank-based estimation scheme which does not require estimating these unknown transformation functions. In particular, we study the rank-based graphical lasso, the rank-based neighborhood Dantzig selector and the rankbased CLIME. We establish their theoretical properties in the setting where the dimension is nearly exponentially large relative to the sample size. It is shown that the proposed rank-based estimators work as well as their oracle counterparts defined with the oracle data. Furthermore, the theory motivates us to consider the adaptive version of the rank-based neighborhood Dantzig selector and the rank-based CLIME that are shown to enjoy graphical model selection consistency without assuming the irrepresentable condition for the oracle and rank-based graphical lasso. Simulated and real data are used to demonstrate the finite performance of the rank-based estimators.
The thresholding covariance estimator has nice asymptotic properties for estimating sparse large covariance matrices, but it often has negative eigenvalues when used in real data analysis. To fix this drawback of thresholding estimation, we develop a positive-definite ℓ 1 -penalized covariance estimator for estimating sparse large covariance matrices. We derive an efficient alternating direction method to solve the challenging optimization problem and establish its convergence properties. Under weak regularity conditions, nonasymptotic statistical theory is also established for the proposed estimator. The competitive finite-sample performance of our proposal is demonstrated by both simulation and real applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.