Background High expression of secreted matricellular protein cysteine-rich 61 ( CYR61 ) correlates with poor prognosis in colorectal cancer (CRC). Aberrant enhancer activation has been shown to correlate with expression of key genes involved in cancer progression. However, such mechanisms in CYR61 transcription regulation remain unexplored. Methods Expression of CYR61 was determined by immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR) and western blotting (WB) in CRC patients paraffin specimens and colon cell lines. ChIP-seq data of enhancer-characteristic histone modifications, in CRC tissues from the Gene Expression Omnibus (GEO) database, were reanalyzed to search for putative enhancers of CYR61 . Dual-luciferase reporter assay was used to detected enhancer activity. Physical interactions between putative enhancers and CYR61 promoter were detected by chromosome conformation capture (3C) assay. Histone modification and transcription factors (TFs) enrichment were detected by ChIP-qPCR. Additionally, biological function of enhancers was investigated by transwell migration assays. Results CRC tissues and cell lines expressed higher level of CYR61 than normal colon mucosa. Three putative enhancers located downstream of CYR61 were found in CRC tissues by ChIP-seq data reanalysis. Consistent with the ChIP-seq analysis results in the GEO database, the normal colon mucosal epithelial cell line NCM460 possessed no active CYR61 enhancers, whereas colon cancer cells exhibited different patterns of active CYR61 enhancers. HCT116 cells had an active Enhancer3, whereas RKO cells had both Enhancer1 and Enhancer3 active. Pioneer factor FOXA1 promoted CYR61 expression by recruiting CBP histone acetyltransferase binding and increasing promoter-enhancer looping frequencies and enhancer activity. CBP knockdown attenuated H3K27ac enrichment, promoter-enhancer looping frequencies, and enhancer activity. Small molecule compound 12-O-tetradecanoyl phorbol-13-acetate (TPA) treatment, which stimulated CYR61 expression, and verteporfin (VP) treatment, which inhibited CYR61 expression, confirmed that the enhancers regulated CYR61 expression. Knockdown and ectopic expression of CYR61 rescued cell migration changes induced by over-expressing and knockdown of FOXA1, respectively. Conclusions CYR61 enhancer activation, mediated by FOXA1 and CBP, occurs during CRC progression to up-regulate CYR61 expression and promote cell migration in CRC, suggesting inhibition of recruitment of FOXA1 and/or CBP to CYR61 enhancers may have therapeutic imp...
Prostate cancer is a common carcinoma in males, the development of which involves the androgen receptor (AR) as a key regulator. AR transactivation induces the high expression of androgen-regulated genes, including transmembrane protease serine 2 (TMPRSS2) and long noncoding RNA prostate cancer-associated transcript 38 (PRCAT38). PRCAT38 and TMPRSS2 are both located on chromosome 21, separated by a series of enhancers. PRCAT38 is a prostate-specific long noncoding RNA that is highly expressed in cancer tissue as compared to normal tissue. Here, we show chromatin looping by enhancers E1 and E2 with the promoters for PRCAT38 and TMPRSS2, indicating the co-regulation of PRCAT38 and TMPRSS2 by the same enhancers. The knockout of enhancer E1 or E2 simultaneously impaired the transcription of PRCAT38 and TMPRSS2 and inhibited cell growth and migration. Moreover, the loop formation and enhancer activity were mediated by AR/FOXA1 binding and the activity of acetyltransferase p300. Our findings demonstrate the utilization of shared enhancers in the joint regulation of two oncogenes in prostate cancer cells.
BackgroundOral tongue squamous cell carcinoma (OTSCC) is a devastating tumor with poor prognosis. There is an urgent need for reliable biomarkers to help predict prognosis and guide treatment for OTSCC. In the current study, we aimed to develop a robust multi-gene signature and prognostic nomogram to predict the prognosis of patients with non-distant metastatic OTSCC.MethodsOTSCC-related differentially-expressed genes were screened from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression based on 1,000 bootstrap replicates, LASSO regression and stepwise multivariate Cox regression were utilized to develop a novel multi-mRNA signature for predicting overall survival in OTSCC. The concordance index, area under receiver operating characteristic (ROC AUC) and calibration curve were employed to assess the prediction capacity of the novel multi-gene model. In addition, a prognostic nomogram was constructed to facilitate the clinical use of the fitted model. The Kaplan-Meier with log-rank test was employed to assess differences in overall survival.ResultsWe successfully established a novel 15-mRNA prognostic model for predicting overall survival of non-distant metastatic OTSCC, involving ADTRP, ITGA3, RFC4, CCDC96, CYP2J2, NELL2, SPHK1, SPAG16, HBEGF, S100A9, EGFL6, ADGRG6, PDE4D, ABCA4, and CTTN. The prediction ability of this 15-gene signature was independent of other clinicopathological factors, with an HR of 11.5 (95% CI: 4.70–28.3). Moreover, internal validation by bootstrap analysis yielded a C-index of 0.849, with a 3-year AUC of 0.907 and 5-year AUC of 0.944, which implied excellent prediction accuracy of the fitted model. In addition, external validation by using the GEO dataset (GSE41116) yielded a C-index of 0.804, with a 3-year AUC of 0.868 and 5-year AUC of 0.855, which also indicated good prediction ability of the 15-gene model. Finally, a prognostic nomogram integrating risk group, grade, T stage and N stage was established.ConclusionOur results demonstrate our 15-gene signature was independently associated with overall survival in non-distant metastatic OTSCC. Moreover, the prognostic nomogram integrating the 15-gene signature and clinicopathological factors has potential to be developed as a prognostic tool.
ObjectiveLimiting purine intake, inhibiting xanthine oxidoreductase (XOR) and inhibiting urate reabsorption in proximal tubule by uricosuric drugs, to reduce serum uric acid (UA) levels, are recognized treatments for gout. However, the mechanism of increased how XOR expression and activity in hyperuricemia and gout remains unclear. This study aims to explore whether exogenous purines are responsible for increased XOR expression and activity.MethodsHepG2 and Bel-7402 human hepatoma cells were stimulated with exogenous purine, or were exposed to conditioned growth medium of purine-stimulated Jurkat cells, followed by measurement of XOR expression and UA production to determine the effect of lymphocyte-secreted cytokines on XOR expression in hepatocytes. The expression of STAT1, IRF1 and CBP and their binding on the XDH promoter were detected by western blotting and ChIP-qPCR. The level of DNA methylation was determined by bisulfite sequencing PCR. Blood samples from 117 hyperuricemia patients and 119 healthy individuals were collected to analyze the correlation between purine, UA and IFN-γ concentrations.ResultsExcess of purine was metabolized to UA in hepatocyte metabolism by XOR that was induced by IFN-γ secreted in the conditioned growth medium of Jurkat cells in response to exogenous purine, but it did not directly induce XOR expression. IFN-γ upregulated XOR expression due to the enhanced binding of STAT1 to IRF1 to further recruit CBP to the XDH promoter. Clinical data showed positive correlation of serum IFN‐γ with both purine and UA, and associated risk of hyperuricemia.ConclusionPurine not only acts as a metabolic substrate of XOR for UA production, but it induces inflammation through IFN-γ secretion that stimulates UA production through elevation of XOR expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.