The type VI secretion system (T6SS) is a lethal weapon used by many bacteria to kill eukaryotic predators or prokaryotic competitors. Killing by the T6SS results from repetitive delivery of toxic effectors. Despite their importance in dictating bacterial fitness, systematic prediction of T6SS effectors remains challenging due to high effector diversity and the absence of a conserved signature sequence. Here, we report a class of T6SS effector chaperone (TEC) proteins that are required for effector delivery through binding to VgrG and effector proteins. The TEC proteins share a highly conserved domain (DUF4123) and are genetically encoded upstream of their cognate effector genes. Using the conserved TEC domain sequence, we identified a large family of TEC genes coupled to putative T6SS effectors in Gram-negative bacteria. We validated this approach by verifying a predicted effector TseC in Aeromonas hydrophila. We show that TseC is a T6SS-secreted antibacterial effector and that the downstream gene tsiC encodes the cognate immunity protein. Further, we demonstrate that TseC secretion requires its cognate TEC protein and an associated VgrG protein.Distinct from previous effector-dependent bioinformatic analyses, our approach using the conserved TEC domain will facilitate the discovery and functional characterization of new T6SS effectors in Gram-negative bacteria.interspecies interaction | colicin | antitoxin | toxin | protein secretion
The arms race among microbes is a key driver in the evolution of not only the weapons but also defence mechanisms. Many gram-negative bacteria use the type six secretion system (T6SS) to deliver toxic effectors directly into neighbouring cells. Defence against effectors requires cognate immunity proteins. However, here we show immunity-independent protection mediated by envelope stress responses in Escherichia coli and Vibrio cholerae against a V. cholerae T6SS effector, TseH. We demonstrate that TseH is a PAAR-dependent species-specific effector highly potent against Aeromonas species but not against its V. cholerae immunity mutant or E. coli . Structural analysis reveals TseH is likely a NlpC/P60 family cysteine endopeptidase. We determine that two envelope stress response pathways, Rcs and BaeSR, protect E. coli from TseH toxicity by mechanisms including capsule synthesis. The two-component system WigKR (VxrAB) is critical for protecting V. cholerae from its own T6SS despite expressing immunity genes. WigR also regulates T6SS expression, suggesting a dual role in attack and defence. This deepens our understanding of how bacteria survive T6SS attacks and suggests that defending against the T6SS represents a major selective pressure driving the evolution of species-specific effectors and protective mechanisms mediated by envelope stress responses and capsule synthesis.
The type VI secretion system (T6SS) is used by many Gram-negative bacteria as a molecular weapon to modulate neighbouring bacterial and eukaryotic cells, thereby affecting the dynamics of community structure in multiple species environments. The T6SS injects its inner-needle Hcp tube, the sharpening tip complex consisting of VgrG and PAAR, and toxic effectors into neighbouring cells. Its functions are largely determined by the activities of its delivered effectors. Six mechanisms of effector delivery have been described: two mediated by the inner tube and the others mediated by the VgrG and PAAR tip complex. Here, we report an additional effector delivery mechanism that relies on interaction with a chaperone complex and a PAAR protein as a carrier. The Pseudomonas aeruginosa PAO1 TOX-REase-5 domain-containing effector TseT directly interacts with PAAR4 and the chaperone TecT for delivery, and an immunity protein, TsiT, for protection from its toxicity. TecT forms a complex with its co-chaperone, co-TecT, which is disrupted by the carboxy-terminal tail of PAAR4. In addition, we delineate a complex, multilayered competitive process that dictates effector trafficking. PAAR delivery provides an additional tool for engineering cargo protein translocation.
Highlights d Combinatorial effector inactivation delineates functions and physical contact d Tit-for-tat of P. aeruginosa responds to a specific effector TseL d Immunity-independent stress responses provide protection against TseL toxicity d Stress response is akin to microbial innate immunity for general protection
Delivery of protein-based drugs, antigens, and gene-editing agents has broad applications. The type VI protein secretion system (T6SS) can target both bacteria and eukaryotic cells and deliver proteins of diverse size and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.