Acute hepatopancreatic necrosis disease (AHPND) has recently emerged as a serious disease of cultured shrimp. A total of 19 lactic acid bacteria (LAB) strains isolated from shrimp samples were characterized based on morphological characteristics, biochemical tests, sequencing analysis, and their ability to antagonize Vibrio parahaemolyticus, which causes AHPND in whiteleg shrimp. Results from the agar well diffusion method indicated that 3 out of 19 isolated LAB strains showed the highest antagonizing ability against AHPND V. parahaemolyticus strain with an inhibition zone diameter ranging from 18 to 20 mm. Experiments where shrimps were given feed supplemented with these LAB strains and challenged with AHPND strain showed high survival rates (approximately 80.0%), which were not significantly different as compared to those recorded in the negative control treatment (86.6%), but significantly different to those recorded in the positive control treatment (40.6%) after 16 days of the experiment. However, the histological images of shrimp hepatopancreas indicated that the infection rate significantly reduced from 60.0% to 11.1% in shrimps fed with LAB-supplemented feeds and challenged with AHPND V. parahaemolyticus strain as compared to those in the positive control treatment. A polymerase chain reaction (PCR) and 16S rRNA gene sequencing confirmed the identification of LAB strain. These results can be applied in further experiments to investigate the ability of L. plantarum in preventing AHPND in intensively cultured whiteleg shrimp.
This study aimed to evaluate the growth, survival rate, and resistance to acute hepatopancreatic necrosis disease (AHPND) of white leg shrimp (Penaeus vannamei) by using Lactobacillus plantarum, Lactobacillus fermentum, and Pediococcus pentosaceus mixed with feed, and at the same time supplying CNP in a ratio of 15:1:0.1 to the water. As a result, the treatments that shrimp were fed with feed containing lactic acid bacteria (LAB), especially L. plantarum, have increased shrimp growth, total hemocyte cells, granulocyte cells, and hyaline cells significantly (p < 0.05) in comparison to the control group. The supply of CNP to the water has promoted the intensity of V. parahaemolyticus effects on shrimp health and significantly decreased total hemocyte cells, granulocyte cells, and hyaline cells by 30–50% in the period after three days of the challenge, except in L. plantarum treatment, which had only a 20% decrease compared to other treatments. In CNP supplying treatments, the AHPND infected rate and mortality of shrimp were higher than those in other treatments. In summary, the supply of CNP had significantly reduced the shrimp’s immune response and promoted the susceptibility of shrimp to AHPND in both cases of use with and without LAB-containing diets.
The TiO 2 /hydroxyapatite (HAp) composite has attracted much attention as a photocatalyst for pollution treatment in water or air because this composite can improve the properties of pure TiO 2 including a low efficiency, narrow light response range, low adsorption capacity for hydrophobic contaminants, and difficult recovery of TiO 2 particles after using in Aquarius environment. To obtain the best composite containing the two components including TiO 2 and HAp, the role of HAp in TiO 2 /hydroxyapatite photocatalytic material should be analyzed and evaluated. This chapter will significantly present a review of the role of HAp in the TiO 2 /hydroxyapatite composite including the adsorption ability of contaminations and the promoted impacts of HAp component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.