Precipitation is a crucial component of the water cycle and plays a key role in hydrological processes. Recently, satellite-based precipitation products (SPPs) have provided grid-based precipitation with spatiotemporal variability. However, SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution of these products is still relatively coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation based on a combination of rainfall observation data with multiple SPPs for the period of 2003–2017 across South Korea. A Random Forest (RF) machine-learning algorithm model was applied for producing a new merged precipitation product. In addition, several statistical linear merging methods have been adopted to compare with the results achieved from the RF model. To investigate the efficiency of RF, rainfall data from 64 observed Automated Synoptic Observation System (ASOS) installations were collected to analyze the accuracy of products through several continuous as well as categorical indicators. The new precipitation values produced by the merging procedure generally not only report higher accuracy than a single satellite rainfall product but also indicate that RF is more effective than the statistical merging method. Thus, the achievements from this study point out that the RF model might be applied for merging multiple satellite precipitation products, especially in sparse region areas.
Estimation of sediment transport capacity (STC) plays a crucial role in simulating soil erosion using any physics-based models. In this research, we aim to investigate the pros and cons of six popular STC methods (namely, Shear velocity, Kilinc-Richardson (KR), Effective stream power, Slope and unit discharge, Englund-Hansen (EH), and Unit stream power) for soil erosion/deposition simulation at watershed scales. An in-depth analysis was performed using the selected STC methods integrated into the Grid Surface Subsurface Hydrologic Analysis model for investigating the changes in morphology at spatial-temporal scales at the Cheoncheon watershed, South Korea, over three storm events. Conclusions were drawn as follows. (1) Due to the ability of the KR and EH methods to include an additional parameter (i.e., erodibility coefficient), they outperformed others by producing more accurate simulation results of sediment concentration predictions. The KR method also proved to be superior to the EH method when it showed a more suitable for sediment concentration simulations with a wide range of sediment size and forcing magnitude. (2) We further selected 2 STC methods among the 6 methods to deeply explore the spatial distribution of erosion/deposition. The overall results were more agreeable. For instance, the phenomenon of erosion mainly occurred upstream of watersheds with steep slopes and unbalanced initial sediment concentrations, whereas deposition typically appeared at locations with flat terrain (or along the mainstream). The EH method demonstrated the influence of topography (e.g., gradient slope) on accretionary erosion/deposition results more significantly than the KR method. The obtained results contribute a new understanding of rainfall-sediment-runoff processes and provide fundamental plans for soil conservation in watersheds.
Calculating rainfall erosivity, which is the capacity of rainfall to dislodge soil particles and cause erosion, requires the measurement of the rainfall kinetic energy (KE). Direct measurement of KE has its own challenges, owing to the high cost and complexity of the measuring instruments involved. Consequently, the KE is often approximated using empirical equations derived from rainfall intensity (Ir) inputs in the absence of such instruments. However, the KE–Ir equations strongly depend on local climate patterns and measurement methods. Therefore, this study aims to compare and evaluate the efficacy of 27 KE–Ir equations with observed data. Based on a re-analysis, we also propose an exponential KE–Ir equation for the entire Korean site, and the spatial distribution of its parameter in the equation is also discussed. In this investigation, we used an optical disdrometer (OTT Parsivel2) to gather data in Sangju City (Korea) between June 2020 and December 2021. The outputs of this study are shown as follows: (1) The statistically most accurate estimates of KE expenditure and KE content in Sangju City are obtained using power-law equations given by Sanchez-Moreno et al. and exponential equations published by Lee and Won, respectively. (2) The suggested KE–Ir equation applied to the entire Korean site exhibits a comparable general correlation with the observed data. The parameter maps indicate a high variance in geography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.