We investigated the quality characteristics and antioxidant activities of yogurt supplemented with 1%, 2%, and 3% aronia juice and fermented for 24 h at 37°C. The total acidity increased with increasing levels of aronia juice and incubation time. Lightness and yellowness of the yogurt decreased, but redness increased, with increasing aronia juice content and incubation time. The number of lactic acid bacteria (LAB) increased with increased incubation time, and yogurt containing 2% and 3% aronia juice showed higher LAB counts than 1% aroinia juice-supplemented yogurt. The total polyphenol and flavonoid contents increased proportionally with increasing levels of aronia juice. Antioxidant activity of aronia-containing yogurt was significantly higher than that of the control and increased proportionally with aronia juice concentration. Yogurt with 2% aronia juice had the best taste (P<0.05). Aronia juice may be a useful additive for improving the taste and antioxidant potential of yogurt.
Methane is a promising next-generation carbon feedstock for industrial biotechnology due to its low price and huge availability. Biological conversion of methane to valuable products can mitigate methane-induced global warming as greenhouse gas. There have been challenges for the conversion of methane into various chemicals and fuels using engineered non-native hosts with synthetic methanotrophy or methanotrophs with the reconstruction of synthetic pathways for target products. Herein, we analyze the technical challenges and issues of potent methane bioconversion technology. Pros and cons of metabolic engineering of methanotrophs for methane bioconversion, and perspectives on the bioconversion of methane to chemicals and liquid fuels are discussed.
Background
Methane is the primary component of natural gas and biogas. The huge abundance of methane makes it a promising alternative carbon source for industrial biotechnology. Herein, we report diamine compound, putrescine, production from methane by an industrially promising methanotroph
Methylomicrobium alcaliphilum
20Z.
Results
We conducted adaptive evolution to improve putrescine tolerance of
M. alcaliphilum
20Z because putrescine highly inhibits the cell growth. The evolved strain 20ZE was able to grow in the presence of 400 mM of putrescine dihydrochloride. The expression of linear pathway ornithine decarboxylase genes from
Escherichia coli
and
Methylosinus trichosporium
OB3b allowed the engineered strain to produce putrescine. A higher putrescine titer of 12.44 mg/L was obtained in the strain 20ZE-pACO with ornithine decarboxylase from
M. trichosporium
OB3b. For elimination of the putrescine utilization pathway, spermidine synthase (MEALZ_3408) was knocked out, resulting in no spermidine formation in the strain 20ZES1-pACO with a putrescine titer of 18.43 mg/L. Next, a genome-scale metabolic model was applied to identify gene knockout strategies. Acetate kinase (MEALZ_2853) and subsequently lactate dehydrogenase (MEALZ_0534) were selected as knockout targets, and the deletion of these genes resulted in an improvement of the putrescine titer to 26.69 mg/L. Furthermore, the putrescine titer was improved to 39.04 mg/L by overexpression of key genes in the ornithine biosynthesis pathway under control of the pTac promoter. Finally, suitable nitrogen sources for growth of
M. alcaliphilum
20Z and putrescine production were optimized with the supplement of 2 mM ammonium chloride to nitrate mineral salt medium, and this led to the production of 98.08 mg/L putrescine, almost eightfold higher than that from the initial strain. Transcriptome analysis of the engineered strains showed upregulation of most genes involved in methane assimilation, citric acid cycle, and ammonia assimilation in ammonia nitrate mineral salt medium, compared to nitrate mineral salt medium.
Conclusions
The engineered
M. alcaliphilum
20ZE4-pACO strain was able to produce putrescine up to 98.08 mg/L, almost eightfold higher than the initial strain. This study represents the bioconversion of methane to putrescine—a high value-added diamine compound.
Electronic supplementary material
The online version of this article (10.1186/s13068-019-1490-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.