The phenotypic plasticity of Schwann cells (SCs) has contributed to the regenerative potential of the peripheral nervous system (PNS), but also pathological processes. This doublesided effect has led to an increasing attention to the role of extracellular vesicles (EVs) or exosomes in SCs to examine the intercellular communication between SCs and their surroundings. Here, we first describe the current knowledge of SC and EV biology, which forms the basis for the updates on advances in SC-derived exosomes research. We seek to explore in-depth the exosome-mediated molecular mechanisms involved in the regulation of SCs and their microenvironment. This review concludes with potential applications of SC-derived exosomes as delivery vehicles for therapeutics and biomarkers. The goal of this review is to emphasize the crucial role of SC-derived exosomes in the functional integration of the PNS, highlighting an emerging area in which there is much to explore and re-explore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.