Background Elymus nutans Griseb., is an important alpine perennial forage of Pooideae subfamily with strong inherited cold tolerance. To get a deeper insight into its molecular mechanisms of cold tolerance, we compared the transcriptome profiling by RNA-Seq in two genotypes of Elymus nutans Griseb. the tolerant Damxung (DX) and the sensitive Gannan (GN) under cold stress.ResultsThe new E. nutans transcriptomes were assembled and comprised 200,520 and 181,331 transcripts in DX and GN, respectively. Among them, 5436 and 4323 genes were differentially expressed in DX and GN, with 170 genes commonly expressed over time. Early cold responses involved numerous genes encoding transcription factors and signal transduction in both genotypes. The AP2/EREBP famliy of transcription factors was predominantly expressed in both genotypes. The most significant transcriptomic changes in the later phases of cold stress are associated with oxidative stress, primary and secondary metabolism, and photosynthesis. Higher fold expressions of fructan, trehalose, and alpha-linolenic acid metabolism-related genes were detected in DX. The DX-specific dehydrins may be promising candidates to improve cold tolerance. Twenty-six hub genes played a central role in both genotypes under cold stress. qRT-PCR analysis of 26 genes confirmed the RNA-Seq results.ConclusionsThe stronger transcriptional differentiation during cold stress in DX explains its better cold tolerance compared to GN. The identified fructan biosynthesis, alpha-linolenic acid metabolism, and DX-specific dehydrin-related genes may provide genetic resources for the improvement of cold-tolerant characters in DX. Our findings provide important clues for further studies of the molecular mechanisms underlying cold stress responses in plants.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3222-0) contains supplementary material, which is available to authorized users.
The R2R3-MYB genes make up one of the largest transcription factor families in plants, and play regulatory roles in various biological processes such as development, metabolism and defense response. Although genome-wide analyses of this gene family have been conducted in several species, R2R3-MYB genes have not been systematically analyzed in Medicago truncatula, a sequenced model legume plant. Here, we performed a comprehensive, genome-wide computational analysis of the structural characteristics, phylogeny, functions and expression patterns of M. truncatula R2R3-MYB genes. DNA binding domains are highly conserved among the 155 putative MtR2R3-MYB proteins that we identified. Chromosomal location analysis revealed that these genes were distributed across all eight chromosomes. Results showed that the expansion of the MtR2R3-MYB family was mainly attributable to segmental duplication and tandem duplication. A comprehensive classification was performed based on phylogenetic analysis of the R2R3-MYB gene families in M. truncatula, Arabidopsis thaliana and other plant species. Evolutionary relationships within clades were supported by clade-specific conserved motifs outside the MYB domain. Species-specific clades have been gained or lost during evolution, resulting in functional divergence. Also, tissue-specific expression patterns were investigated. The functions of stress response-related clades were further verified by the changes in transcript levels of representative R2R3-MYB genes upon treatment with abiotic and biotic stresses. This study is the first report on identification and characterization of R2R3-MYB gene family based on the genome of M. truncatula, and will facilitate functional analysis of this gene family in the future.
Gibberellins (GAs) affect forage growth and development; however, it is largely unknown how GAs regulate the metabolism of fructan (an important polysaccharide reserve in many cereals) and the regrowth of forage plants after defoliation. To explore the mechanism of the responses of defoliated sheepgrass [Leymus chinensis (Trin.) Tzvel] to GA, we sprayed defoliated sheepgrass with GA3 and/or paclobutrazol (PAC; an inhibitor of GA biosynthesis) and analyzed the growth characteristics, carbohydrate contents, and transcript levels of genes related to GA metabolism, GA signal transduction, and fructan metabolism. The results showed that spraying exogenous GA3 onto defoliated sheepgrass promoted leaf and internode elongation, while spraying with PAC inhibited leaf and internode elongation, compared with the control. Spraying GA3 onto defoliated sheepgrass also altered the fructan content by extending the period of fructan utilization. At the transcriptional level, exogenous GA3 increased the transcript levels of genes related to GA metabolism in the sheath. Taken together, our results suggest that exogenous GA3 stimulates the regrowth of defoliated sheepgrass regrowth by regulating GA and fructan-related genes, and by promoting endogenous GA synthesis, fructan metabolism, and signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.