Currently, artificial enzymes-based photodynamic therapy (PDT) is attractive due to its efficient capacity to change the immunosuppressive tumor microenvironment (TME). It is of great significance to study the therapeutic mechanism of novel artificial enzymes in TME through a monitoring strategy and improve the therapeutic effect. In this study, Au@carbon dots (Au@CDs) nanohybrids with a core-shell structure are synthesized, which not only exhibit tunable enzyme-mimicking activity under near-infrared (NIR) light, but also excellent surface-enhanced Raman scattering (SERS) properties. Therefore, Au@CDs show a good capability for monitoring NIR-photoinduced peroxidase-like catalytic processes via a SERS strategy in tumor. Moreover, the Au@CDs deplete glutathione with the cascade catalyzed reactions, thus elevating intratumor oxidative stress amplifying the reactive oxygen species damage based on the NIR-photoinduced enhanced peroxidase and glutathione oxidase-like activities, showing excellent and fast PDT therapeutic effect promoted by photothermal property in 3 min, finally leading to apoptosis in cancer cells. Through SERS monitoring, it is further found that after removing the NIR light source for 33 min, the reactive oxygen species (ROS) activity of the TME is counteracted and eliminated due to the presence of glutathione. This work presents a guidance to rationally design of artificial enzyme for ROS-involved therapeutic strategies and a new spectroscopic tool to evaluate the tumor catalytic therapy.
About 786.4 thousand stars were observed by LAMOST twice or more during the first stage of its spectroscopic survey. The radial velocity differences for about 256 thousand targets are larger than 10 km s−1 and they are possible spectroscopic binary or variable candidates (SBVCs). It is shown that most SBVCs are slightly metal poorer than the Sun. There are two peaks in the temperature distribution of SBVCs around 5760 K and 4870 K, while there are three peaks in the distribution of the gravitational acceleration at 2.461, 4.171 and 4.621 cm s−2. The locations of SBVCs on the [Fe/H]-T, [Fe/H]-log g, log g-T and H-R diagrams are investigated. It is found that the detected SBVCs could be classified into four groups. The first group has higher log g ∼4.621 and lower T ∼ 4870 K which are mainly cool red dwarf binaries. The second group of SBVCs has log g around 4.171 cm s−2 that includes binaries and pulsating stars such as δ Sct and γ Dor variables. The gravitational accelerations of the third group of SBVCs are higher and some of them are below the zero-age main sequence. They may be contact binaries in which the primary components are losing energy to the secondaries in the common envelopes and are at a special stellar evolutionary stage. The last group is composed of giants or supergiants with log g around 2.461 cm s−2 that may be evolved pulsating stars. One target (C134624.29+333921.2) is confirmed as an eclipsing binary with a period of 0.65 days. A preliminary analysis suggests that it is a detached binary with a mass ratio of 0.46. The primary fills its critical Roche lobe by about 89%, indicating that mass transfer will occur between the two components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.