Foxtail millet (Setaria italica (L.) P. Beauv) is cultivated throughout most parts of Shanxi province. Although quite a number of reports have been conducted on the bioactivities of foxtail millet, little information was available on the metabolite differences of the foxtail millet seeds from different cultivation regions. In this study, a systematic study on the metabolite composition of the foxtail millet seed from Shanxi province was conducted by ultra-high performance liquid chromatography combined with electrospray ionization quadrupole/orbitrap high-resolution mass spectrometry, and 158 compounds were characterized through analysis of mass fragmentation patterns and comparison with the data in the databases and literatures. Then the metabolomic analysis, in combination with heatmap and hierarchical clustering analysis revealed the significant differences between the foxtail millet from northern and southern Shanxi province, which was ascribed to 20 differential metabolites. Then metabolic pathway analysis was performed based on these differential metabolites, and three metabolic pathways were selected as the key contributors. The results showed that foxtail millet from different cultivation regions showed obvious metabolite differences, which was probably related to environmental factors. In addition, the findings also provide an important reference for further research on the functional food development from foxtail millet.
Practical applicationsFoxtail millet (Setaria italica (L.) P. Beauv) as a staple food among the majority of people, is rich in bioactive nutrients, including free fatty acids, triglycerides, cellulose, protein, vitamins, and polyphenol, et al. The metabolite composition of the foxtail millet seed was investigated systematically and the results showed that the climate conditions can directly affect the metabolite composition of foxtail millets, and provided important reference for the further research on the resource utilization and functional food development from foxtail millet.
Psoriatic arthritis (PsA) is a chronic inflammatory joint disease, and the diagnosis is quite difficult due to the unavailability of reliable clinical markers. This study aimed to investigate the fecal metabolites in PsA by comparison with rheumatoid arthritis (RA), and to identify potential diagnostic biomarkers for PsA. The metabolic profiles of the fecal samples from 27 PsA and 29 RA patients and also 36 healthy controls (HCs) were performed on ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). And differentially altered metabolites were screened and assessed using multivariate analysis for exploring the potential biomarkers of PsA. The results showed that 154 fecal metabolites were significantly altered in PsA patients when compared with HCs, and 45 metabolites were different when compared with RA patients. A total of 14 common differential metabolites could be defined as candidate biomarkers. Furthermore, a support vector machines (SVM) model was performed to distinguish PsA from RA patients and HCs, and 5 fecal metabolites, namely, α/β-turmerone, glycerol 1-hexadecanoate, dihydrosphingosine, pantothenic acid and glutamine, were determined as biomarkers for PsA. Through the metabolic pathways analysis, we found that the abnormality of amino acid metabolism, bile acid metabolism and lipid metabolism might contribute to the occurrence and development of PsA. In summary, our research provided ideas for the early diagnosis and treatment of PsA by identifying fecal biomarkers and analyzing metabolic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.