Both conductivity and mobility are essential to charge transfer by carrier transport layers (CTLs) in perovskite solar cells (PSCs). The defects derived from generally used ionic doping method lead to the degradation of carrier mobility and parasite recombinations. In this work, a novel molecular doping of NiO hole transport layer (HTL) is realized successfully by 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ). Determined by X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, the Fermi level (E ) of NiO HTLs is increased from -4.63 to -5.07 eV and valence band maximum (VBM)-E declines from 0.58 to 0.29 eV after F6TCNNQ doping. The energy level offset between the VBMs of NiO and perovskites declines from 0.18 to 0.04 eV. Combining with first-principle calculations, electrostatic force microscopy is applied for the first time to verify direct electron transfer from NiO to F6TCNNQ. The average power conversion efficiency of CsFAMA mixed cation PSCs is boosted by ≈8% depending on F6TCNNQ-doped NiOx HTLs. Strikingly, the champion cell conversion efficiency of CsFAMA mixed cations and MAPbI -based devices gets to 20.86% and 19.75%, respectively. Different from passivation effect, the results offer an extremely promising molecular doping method for inorganic CTLs in PSCs. This methodology definitely paves a novel way to modulate the doping in hybrid electronics more than perovskite and organic solar cells.
Precipitation-hardening high-entropy alloys (PH-HEAs) with good strength−ductility balances are a promising candidate for advanced structural applications. However, current HEAs emphasize near-equiatomic initial compositions, which limit the increase of intermetallic precipitates that are closely related to the alloy strength. Here we present a strategy to design ultrastrong HEAs with high-content nanoprecipitates by phase separation, which can generate a near-equiatomic matrix in situ while forming strengthening phases, producing a PH-HEA regardless of the initial atomic ratio. Accordingly, we develop a non-equiatomic alloy that utilizes spinodal decomposition to create a low-misfit coherent nanostructure combining a near-equiatomic disordered face-centered-cubic (FCC) matrix with high-content ductile Ni3Al-type ordered nanoprecipitates. We find that this spinodal order–disorder nanostructure contributes to a strength increase of ~1.5 GPa (>560%) relative to the HEA without precipitation, achieving one of the highest tensile strength (1.9 GPa) among all bulk HEAs reported previously while retaining good ductility (>9%).
The heterostructures of the ferromagnet (Cr2Te3) and topological insulator (Bi2Te3) have been grown by molecular beam epitaxy. The topological Hall effect as evidence of the existence of magnetic skyrmions has been observed in the samples in which Cr2Te3 was grown on top of Bi2Te3. Detailed structural characterizations have unambiguously revealed the presence of intercalated Bi bilayer nanosheets right at the interface of those samples. The atomistic spin-dynamics simulations have further confirmed the existence of magnetic skyrmions in such systems. The heterostructures of ferromagnet and topological insulator that host magnetic skyrmions may provide an important building block for next generation of spintronics devices.
Materials with perpendicular magnetic anisotropy (PMA) effect with high Curie temperature is essential in applications. Cr2Te3 is a material that demonstrates PMA effect but with a relatively low Curie temperature of about 180 K. In this work, Cr 2 Te 3 thin films with Curie temperature ranging from 165 K to 295 K were successfully grown on Al2O3 by the molecular beam epitaxy (MBE) technique. To study the physical origin of the improved Curie temperature, structural analysis, magneto-transport and magnetic characterizations were conducted and analyzed in detail. In particular, the n-type feature of these thin films shows that they are an electron-enriched material. Ferromagnetic (FM) ordering and Anti Ferromagnetic (AFM) ordering competition were systematically investigated by magnetization characterizations. A 2 phenomenological model based on the degree of coupling between FM and AFM ordering was proposed to explain the observed Currie temperature enhancement in our samples. These findings indicate that the Curie temperature of Cr 2 Te 3 thin films can be tuned and our material could act as a novel magnetic material with potential for various magnetic applications.
We implement the molecular beam epitaxy method to embed the black-phosphorus-like bismuth nanosheets into the bulk ferromagnet Cr2Te3. As a typical surfactant, bismuth lowers the surface tensions and mediates the layer-by-layer growth of Cr2Te3. Meanwhile, the bismuth atoms precipitate into black-phosphorus-like nanosheets with the lateral size of several tens of nanometers. In Cr2Te3 embedded with Bi-nanosheets, we observe simultaneously a large topological Hall effect together with the magnetic susceptibility plateau and magnetoresistivity anomaly. As a control experiment, none of these signals is observed in the pristine Cr2Te3 samples. Therefore, the Bi-nanosheets serve as seeds of topological Hall effect induced by non-coplanar magnetic textures planted into Cr2Te3. Our experiments demonstrate a new method to generates a large topological Hall effect by planting strong spin-orbit couplings into the traditional ferromagnet, which may have potential applications in spintronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.