Palladium-catalyzed reductive homocoupling of aromatic halides can be performed in alcohol solutions without any auxiliary reducing reagents. Pd(dppf)Cl(2) [dppf = 1,1'-bis(diphenylphosphino)ferrocene] has been shown as the most effective catalyst among the palladium catalysts screened for the model reductive homocoupling of iodobenzene in alcoholic solutions. The reduction of iodobenzene is stoichiometrically coupled with the oxidation of solvent alcohol (3-pentanol). The X-ray photoelectron spectroscopic (XPS) studies clearly indicate that the oxidation of solvent alcohol molecules is involved with the in situ regeneration of the reductive Pd(0)(dppf) active species, indicating that the solvent alcohol also reacts as a reducing reagent for the reductive homocoupling of aromatic halides. Elimination of the external reducing reagents will simplify the product separation and purification. Base is essential for the success of the Pd(dppf)Cl(2)-catalyzed redox reaction as 2 molar equiv of base is needed to neutralize the acid byproduct formed. Biaryls are the predominant products for the Pd(dppf)Cl(2)-catalyzed reductions of the unsubstituted aromatic halides in 3-pentanol solution, whereas the dehalogenation products are predominant for the Pd(dppf)Cl(2)-catalyzed reductions of the substituted aromatic halides. The reaction mechanisms have been discussed for the palladium-mediated concomitant reduction of aromatic halides and oxidation of alcohols without any auxiliary reductants and oxidants.
This study identified nursing-sensitive quality indicators for neonatal intensive care unit care that are suitable for current clinical practice in China.
Abstract. Cordycepin, also termed 3'-deoxyadenosine, is a nucleoside analogue from Cordyceps sinensis and has been reported to demonstrate numerous biological and pharmacological properties. Our previous study illustrated that the anti-tumor effect of cordycepin may be associated with apoptosis. In the present study, the apoptotic effect of cordycepin on HepG2 cells was investigated using 4' ,6-diamidino-2-phenylindole, tetraethylbenzimidazolylcarbocyanine iodide and propidium iodide staining analysis and flow cytometry. The results showed that cordycepin exhibited the ability to inhibit HepG2 cells in a time-and dose-dependent manner when cells produced typical apoptotic morphological changes, including chromatin condensation, the accumulation of sub-G1 cells and change mitochondrial permeability. A potential mechanism for cordycepin-induced apoptosis of human liver cancer HepG2 cells may occur through the extrinsic signaling pathway mediated by the transmembrane Fas-associated with death domain protein. Apoptosis was also associated with Bcl-2 family protein regulation, leading to altered mitochondrial membrane permeability and resulting in the release of cytochrome c into the cytosol. The activation of the caspase cascade is responsible for the execution of apoptosis. In conclusion, cordycepin-induced apoptosis in HepG2 cells involved the extrinsic and intrinsic signaling pathway and was primarily regulated by the Bcl-2 family proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.