Achieving active and stable oxygen evolution reaction (OER) in acid media based on single-atom catalysts is highly promising for cost-effective and sustainable energy supply in proton electrolyte membrane electrolyzers. Here, we report an atomically dispersed Ru1-N4 site anchored on nitrogen-carbon support (Ru-N-C) as an efficient and durable electrocatalyst for acidic OER. The single-atom Ru-N-C catalyst delivers an exceptionally intrinsic activity, reaching a mass activity as high as 3571 A gmetal−1 and turnover frequency of 3348 O2 h−1 with a low overpotential of 267 mV at a current density of 10 mA cm−2. The catalyst shows no evident deactivation or decomposition after 30-hour operation in acidic environment. Operando synchrotron radiation X-ray absorption spectroscopy and infrared spectroscopy identify the dynamic adsorption of single oxygen atom on Ru site under working potentials, and theoretical calculations demonstrate that the O-Ru1-N4 site is responsible for the high OER activity and stability.
An active and stable photocatalyst to directly split water is desirable for solar-energy conversion. However, it is difficult to accomplish overall water splitting without sacrificial electron donors. Herein, we demonstrate a strategy via constructing a single site to simultaneously promote charge separation and catalytic activity for robust overall water splitting. A single Co -P site confined on g-C N nanosheets was prepared by a facile phosphidation method, and identified by electron microscopy and X-ray absorption spectroscopy. This coordinatively unsaturated Co site can effectively suppress charge recombination and prolong carrier lifetime by about 20 times relative to pristine g-C N , and boost water molecular adsorption and activation for oxygen evolution. This single-site photocatalyst exhibits steady and high water splitting activity with H evolution rate up to 410.3 μmol h g , and quantum efficiency as high as 2.2 % at 500 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.