The combined anaerobic-aerobic conditions in air-cathode single-chamber MFCs were used to completely mineralize pentachlorophenol (PCP; 5 mg/L), in the presence of acetate or glucose. Degradation rates of 0.140 ± 0.011 mg/L-h (acetate) and 0.117 ± 0.009 mg/L-h (glucose) were obtained with maximum power densities of 7.7 ± 1.1 W/m(3) (264 ± 39 W/m(2), acetate) and 5.1 ± 0.1 W/m(3) (175 ± 5 W/m(2), glucose). At a higher PCP concentration of 15 mg/L, PCP degradation rates increased to 0.171 ± 0.01 mg/L-h (acetate) and 0.159 ± 0.011 mg/L-h (glucose). However, power was inversely proportional to initial PCP concentration, with decreases of 0.255 W/mg PCP (acetate) and 0.184 W/mg PCP (glucose). High pH (9.0, acetate; 8.0, glucose) was beneficial to exoelectrogenic activities and power generation, whereas an acidic pH = 5.0 decreased power but increased PCP degradation rates (0.195 ± 0.002 mg/L-h, acetate; 0.173 ± 0.005 mg/L-h, glucose). Increasing temperature from 22 to 35°C enhanced power production by 37% (glucose) to 70% (acetate), and PCP degradation rates (0.188 ± 0.01 mg/L-h, acetate; 0.172 ± 0.009 mg/L-h, glucose). Dominant exoelectrogens of Pseudomonas (acetate) and Klebsiella (glucose) were identified in the biofilms. These results demonstrate that PCP degradation using air-cathode single-chamber MFCs may be a promising process for remediation of water contaminated with PCP as well as for power generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.