This paper proposed a hybrid feature extraction algorithm based on local mean decomposition (LMD), which has better solved the existing problems of low classification performance and adaptability limitation. LMD is employed to decompose the electroencephalogram (EEG) signal into multiple components, and then, the hybrid features based on instantaneous energy, fuzzy entropy, and mathematical morphological features are extracted on specific components, and the optimal feature combination is selected by analysis of variance (ANOVA). Finally, the classification result is output by the linear discriminant analysis (LDA) classifier. The results show that the maximum accuracy of the subjects in Data Set III of BCI‐II by the method in this paper is 92.14%, and the maximum mutual information value is 0.8. The number of novel features used in this paper is small, and the complexity of the algorithm is reduced. It can adaptively select effective features according to individual differences and has good robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.