Pickering emulsion gels have potential application as solid fat substitutes and nutraceutical carriers in foods, but a safe and easily available food-derived particle emulsifier is the bottleneck that limits their practical application. In this study, the function of sorghum flour as a particle emulsifier to stabilize the oil-in-water (O/W) Pickering emulsion gels with medium chain triglycerides (MCT) in the oil phase was introduced. Sorghum flour had suitable size distribution (median diameter, 21.47 μm) and wettability (contact angle, 38°) and could reduce the interfacial tension between MCT and water. The oil phase volume fraction (φ) and the addition amount of sorghum flour (c) had significant effects on the formation of Pickering emulsion gels. When c ≥ 5%, Pickering emulsion gels with φ = 70% could be obtained. Microstructure analysis indicated that sorghum flour not only played an emulsifying role at the O/W interface but also prevented oil droplets from coalescing through its viscous effect in the aqueous phase. With increases in c, the droplet size of the emulsion gel decreased, its mechanical properties gradually strengthened, and its protective effect on β-carotene against UV irradiation also improved.
Background:Taihangia rupestris is a perennial herb on the China species red list that is growing on the cliffs of Taihang Mountain in China. However research on the genome of T. rupestris has not been carried out, which severely restricts further research on it. The aim of this study was to conduct a first genome survey of T. rupestris and to develop SSR molecular markers of it. Methods: The genome size and characteristics of T. rupestris were estimated by Illumina Hi-SeqXTen and K-mer analysis. We designed SSR primers in batches with Misa and Primer3, and T. rupestris from different populations were used to verify the selected primers. Finally, datas were analysised by Cervus 3.0 and GenAlex 6.5 for genetic diversity. Results: The genome size of T. rupestris was estimated to be 976.97 Mb with a heterozygosity rate of 0.726% and a sequence repetition rate of 56.93%. The clean reads were assembled into 100973 contigs with the max length of 26073 bp and an N50 value of 2607 bp. Based on the genome data of T. rupestris, a total of 805600 SSR markers were identified and 72769 pairs of primers were designed. In the present study, 100 primers were used to verify that 82 primers were successfully amplified. Conclusion: In general, the genome of T. rupestris is difficult to assemble genome with micro-heterozygosity and high repetition. In this study, 15 pairs of primers with good polymorphism can effectively distinguish different populations of T. rupestris. These analyses laid a foundation for the subsequent whole genome sequencing of T. rupestris.
5-aminolevulinic acid (ALA) is a novel regulator that can promote plant growth, nitrogen uptake, and abiotic stress tolerance. Its underlying mechanisms, however, have not been fully investigated. In this study, the effects of ALA on morphology, photosynthesis, antioxidant systems, and secondary metabolites in two cultivars of 5-year-old Chinese yew (Taxus chinensis) seedlings, ‘Taihang’ and ‘Fujian’, were examined under shade stress (30% light for 30 days) using different doses of ALA (0, 30, and 60 mg/L). The findings from our study show that shade stress significantly reduced plant height, stem thickness, and crown width and increased malondialdehyde (MDA) levels. However, the application of 30 mg/L ALA effectively mitigated these effects, which further induced the activity of antioxidant enzymes under shade stress, resulting in the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) being increased by 10%, 16.4%, and 42.1%, and 19.8%, 20.1%, and 42% in ‘Taihang’ and ‘Fujian’, respectively. It also promoted their role in the absorption, conversion, and efficient use of light energy. Additionally, the use of 30 mg/L ALA caused a significant increase in the concentration of secondary metabolites, including polysaccharide (PC), carotenoid (CR), and flavonoids (FA), with increases of up to 46.1%, 13.4%, and 35.6% and 33.5%, 7.5%, and 57.5% in both yew cultivars, respectively, contributing to nutrient uptake. With ALA treatment, the yew seedlings showed higher chlorophyll (total chlorophyll, chlorophyll a and b) levels and photosynthesis rates than the seedlings that received the shade treatment alone. To conclude, the application of 30 mg/L ALA alleviated shade stress in yew seedlings by maintaining redox balance, protecting the photorespiratory system, and increasing organic metabolites, thus increasing the number of new branches and shoots and significantly promoting the growth of the seedlings. Spraying with ALA may be a sustainable strategy to improve the shade-resistant defense system of yew. As these findings increase our understanding of this shade stress response, they may have considerable implications for the domestication and cultivation of yew.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.