AIMTo investigate the role of nuclear division cycle (NDC)80 in human hepatocellular carcinogenesis.METHODSNDC80 gene expression was analyzed by real-time reverse transcription polymerase chain reaction in 47 paired hepatocellular carcinoma (HCC) and adjacent tissues. The HCC cell line SMMC-7721 was transfected with lentivirus to silence endogenous NDC80 gene expression, which was confirmed by real-time polymerase chain reaction and western blotting. The effects of NDC80 silencing on SMMC-7721 cell proliferation were evaluated by Cellomics ArrayScan VTI imaging. Cell cycle analysis and apoptosis were detected with flow cytometry. Colony formation was assessed by fluorescence microscopy.RESULTSNDC80 expression levels in HCC tissues were significantly higher than those in the adjacent tissues. Functional studies demonstrated that NDC80 silencing significantly reduced SMMC-7721 cell proliferation and colony formation. Knockdown of NDC80 resulted in increased apoptosis and cell cycle arrest at S-phase. NDC80 contributed to HCC progression by reducing apoptosis and overcoming cell cycle arrest.CONCLUSIONElevated expression of NDC80 may play a role in promoting the development of HCC.
Aberrant glycosylation is highly associated with cancer progression. The aim of this study was to compare bifucosylated N-glycans in sera obtained from healthy controls and breast cancer patients, with the goal of identifying a potential indicator for monitoring the recurrence and metastasis of breast cancer. A unique structural pattern of bifucosylated N-glycan, with both core and antennary fucosylation, was identified in breast cancer patients. The spectrum of antennary fucosylation was a composite of the standard spectra of Lewis X and H2, indicating a mixture of the two epitopes. Permethylated N-glycans of the glycoproteins extracted from 91 breast cancer patients and 43 healthy controls were detected using linear ion-trap quadrupole-electrospray ionization mass spectrometry, which appeared to be a highly sensitive and useful approach in the detection and identification of N-glycans. To evaluate MS profile data, several statistical tools were applied, including Student'st-test, partial least squares discriminant analysis and receiver-operating characteristic curve. The results showed that the measurement of bifucosylation degree and CEA levels had an improved diagnostic performance compared with that of CEA alone. We compared the potential of bifucosylated N-glycan as an indicator of breast cancer recurrence with the current clinical biomarkers, i.e., CEA, CA 15-3 and CA125. The result revealed that, compared with CEA, CA 15-3 and CA125, the bifucosylation degree of N-glycans could be a more reliable indicator of breast cancer recurrence.
BACKGROUND Liver failure has high mortality and poor prognosis, and establishing new reliable markers for predicting its prognosis is necessary. Mucosal-associated invariant T (MAIT) cells are a novel population of innate-like lymphocytes involved in inflammatory liver disease, and their potential role in liver failure remains unclear. AIM To investigate alteration of circulating MAIT cells and assess its prognostic value in patients with hepatitis B virus (HBV)-related liver failure. METHODS We recruited 55 patients with HBV-related liver failure, 48 patients with chronic hepatitis B and 40 healthy controls (HCs) from Nantong Third People’s Hospital Affiliated to Nantong University. Peripheral blood mononuclear cells were isolated, and the percentage and number of circulating MAIT cells were detected by flow cytometry. Plasma levels of interleukin (IL)-7, IL-12p70, IL-18 and interferon-α were measured by Luminex assay. RESULTS Circulating MAIT cells were significantly decreased in HBV-related liver failure patients (percentage: 2.00 ± 1.22 vs 5.19 ± 1.27%, P < 0.0001; number: 5.47 ± 4.93 vs 84.43 ± 19.59, P < 0.0001) compared with HCs. More importantly, there was a significant reduction of MAIT cells in patients with middle/late-stage compared with early-stage liver failure. Circulating MAIT cells partially recovered after disease improvement, both in percentage (4.01 ± 1.21 vs 2.04 ± 0.95%, P < 0.0001) and in cell count (17.24 ± 8.56 vs 7.41 ± 4.99, P < 0.0001). The proportion (2.29 ± 1.01 vs 1.58 ± 1.38%, P < 0.05) and number (7.30 ± 5.70 vs 2.94 ± 1.47, P < 0.001) of circulating MAIT cells were significantly higher in the survival group than in the dead/liver transplantation group, and the Kaplan–Meier curve showed that lower expression of circulating MAIT cells (both percentage and cell count) predicted poor overall survival ( P < 0.01). Also, the levels of IL-12 (20.26 ± 5.42 pg/mL vs 17.76 ± 2.79 pg/mL, P = 0.01) and IL-18 (1470.05 ± 1525.38 pg/mL vs 362.99 ± 109.64 pg/mL, P < 0.0001) were dramatically increased in HBV-related liver failure patients compared with HCs. CONCLUSION Circulating MAIT cells may play an important role in the process of HBV-related liver failure and can be an important prognostic marker.
The incidence and mortality of cancer are increasing each year. At present, the sensitivity and specificity of the blood biomarkers that were used in clinical practice are low, which make the detection rate of cancer decrease. With advances in bioinformatics and technology, some non-coding RNA as biomarkers can be easily detected through some traditional and new technologies. Circular RNAs (circRNAs) are non-coding RNAs, that is, they do not encode proteins, and have important regulatory functions. CircRNAs can remain stable in bodily fluids, such as in saliva, blood, urine, and especially plasma. The difference in the expression of plasma circRNAs between cancer patients and normal people may suggest that plasma circRNAs may play an important role in the occurrence and development of cancer. In this review, we summarized the clinical effect of plasma circRNAs in several high-incidence cancers. CircRNAs may be effective biomarkers for tumour diagnosis, treatment selection and prognosis evaluation.
Non-alcoholic fatty liver disease (NAFLD) is characterized by increased uptake and accumulation of lipids in hepatocytes. Simple steatosis may progress to non-alcoholic steatohepatitis (NASH) with inflammation, hepatocellular injury and fibrosis. CCN1 is an important matrix protein that regulates cell death and promotes immune cell adhesion and may potentially control this process.The role of CCN1 in NASH remains unclear. We investigated the role of CCN1 in the pathogenesis of steatohepatitis. CCN1 upregulation was found to be closely related with steatosis in patients with NASH, obese mice and a FFA-treated hepatocyte model. Controlling the expression of CCN1 in murine NASH models demonstrated that CCN1 increased the severity of steatosis and inflammation. From the sequence results, we found that fatty acid metabolism genes were primarily involved in the MCD mice overexpressing CCN1 compared to the control. Then, the expression of fatty acid metabolism genes was determined using a custom-designed pathway-focused qPCR-based gene expression array. Expression analysis showed that CCN1 overexpression significantly upregulated the expression of fatty acid metabolism-associated genes. In vitro analysis revealed that CCN1 increased the intracellular TG content, the pro-inflammatory cytokines and the expression level of apoptosis-associated proteins in a steatosis model using murine primary hepatocytes. We identified CCN1 as an important positive regulator in NASH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.