Complex-valued Magnetic Resonance Imaging (MRI) is widely used in clinical diagnosis. The magnitude images are mainly used for structure visualization, and the phase images reveal tissue properties, such as magnetic susceptibility and fluid flow information. While MRI is slow, compressed sensing (CS) can be used to reconstruct the accelerated acquisitions. Current CS-based MRI reconstruction algorithms mostly focus on magnitude image recovery, with less attention to the recovery of phase images. In this paper, we propose a novel CS algorithm to simultaneously recover the magnitude and phase MR images based on the sparsity of the trigonometric function. The CS method requires a sparse representation of the original images, and it is observed the trigonometric functions of phase images in the Wavelet domain promote sparsity. Therefore, rather than transforming the phase images directly into the Wavelet domain, we calculate the sine and cosine of the phase images whose Wavelet transforms are set as the L1norm regularization term. The combination of the dual trigonometric functions captures a unique, faithful four-quadrant phase information, which also improves the reconstructed magnitude images through an alternating optimization procedure. Reconstructions of simulated images and in vivo images are studied, and both show the superiority of the proposed method over compared phase recovery algorithms.
In this paper, we present a new compressive image fusion method based on combined sparsifying transforms. First, the framework of compressive image fusion is introduced briefly. Then, combined sparsifying transforms are presented to enhance the sparsity of images. Finally, a reconstruction algorithm based on the nonlinear conjugate gradient is presented to get the fused image. The simulations demonstrate that by using the combined sparsifying transforms better results can be achieved in terms of both the subjective visual effect and the objective evaluation indexes than using only a single sparsifying transform for compressive image fusion
The phase cycling method is a state-of-the-art method to reconstruct complex-valued MR image. However, when it follows practical two-dimensional (2D) subsampling Cartesian acquisition which is only enforcing random sampling in the phase-encoding direction, a number of artifacts in magnitude appear. A modified approach is proposed to remove these artifacts under practical MRI subsampling, by adding one-dimensional total variation (TV) regularization into the phase cycling method to “pre-process” the magnitude component before its update. Furthermore, an operation used in SFISTA is employed to update the magnitude and phase images for better solutions. The results of the experiments show the ability of the proposed method to eliminate the ring artifacts and improve the magnitude reconstruction.
The methods of compressed sensing magnetic resonance imaging (CS-MRI) can be divided into two categories roughly based on the number of target variables. One group devotes to estimating the complex-valued MRI image. And the other calculates the magnitude and phase parts of the complex-valued MRI image, respectively, by enforcing separate penalties on them. We propose a new CS-based method based on dual-tree complex wavelet (DT CWT) sparsity, which is under the frame of the second class of CS-MRI. Owing to the separate regularization frame, this method reduces the impact of the phase jumps (that means the jumps or discontinuities of phase values) on magnitude reconstruction. Moreover, by virtue of the excellent features of DT CWT, such as nonoscillating envelope of coefficients and multidirectional selectivity, the proposed method is capable of capturing more details in the magnitude and phase images. The experimental results show that the proposed method recovers the image contour and edges information well and can eliminate the artifacts in magnitude results caused by phase jumps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.