Sunscreens have been on the market for many decades as a means of protection against ultraviolet-induced erythema. Over the years, evidence has also shown their efficacy in the prevention of photoaging, dyspigmentation, DNA damage, and photocarcinogenesis. In the USA, most broad-spectrum sunscreens provide protection against ultraviolet B (UVB) radiation and short-wavelength ultraviolet A (UVA) radiation. Evidence suggests that visible light and infrared light may play a role in photoaging and should be considered when choosing a sunscreen. Currently, there is a paucity of US FDA-approved filters that provide protection against long UVA (> 370 nm) and none against visible light. Additionally, various sunscreen additives such as antioxidants and photolyases have also been reported to protect against and possibly reverse signs of photoaging. This literature review evaluates the utility of sunscreen in protecting against photoaging and further explores the requirements for an ideal sunscreen.
Diblock copolymers consisting of poly(ethylene glycol)-block-poly(γ-4-(((2-(piperidin-1-yl)ethyl)amino)methyl)benzyl-L-glutamate) (PEG-b-PVBLG-8) were synthesized and evaluated for their ability to mediate gene delivery in hard-to-transfect cells like IMR-90 human fetal lung fibroblasts and human embryonic stem cells (hESCs). The PEG-b-PVBLG-8 contained a membrane-disruptive, cationic, helical polypeptide block (PVBLG-8) for complexing with DNA and a hydrophilic PEG block to improve the biocompatibility of the gene delivery vehicle. The incorporation of PEG effectively reduced the toxicity of the helical PVBLG-8 block without dramatically compromising the polymer's ability to destabilize membranes or form complexes with DNA. PEG-b-PVBLG-8 copolymers with low (n = 76) and high (n = 287) degrees of polymerization (n) of the PVBLG-8 block were synthesized and evaluated for gene delivery. PEG-b-PVBLG-8 diblock polymers with a high degree of polymerization have a greater transfection efficiency and lower toxicity in IMR-90 cells than the commercial reagent Lipofectamine 2000. The usefulness of PEG-b-PVBLG-8 was further demonstrated via the successful transfection of hESCs without a measured loss in cell pluripotency markers.
Fungi account for billions of infections worldwide. The second most prominent causative agent for fungal infections is Candida albicans (C. albicans). As strains of fungi become resistant to antifungal medications, new treatment modalities must be investigated to combat these infections. One approach is to employ photodynamic therapy (PDT). PDT utilizes a photosensitizer, light, and cellular O to produce reactive oxygen species (ROS), which then induce oxidative stress resulting in apoptosis. Silicon phthalocyanine Pc 4 is a photosensitizer that has exhibited success in clinical trials for a myriad of skin diseases. The hydrophobic nature of Pc 4, however, poses significant formulation and delivery challenges in the use of this therapy. To mitigate these concerns, a drug delivery vehicle was synthesized to better formulate Pc 4 into a viable PDT agent for treating fungal infections. Utilizing poly(amidoamine) dendrimers as the framework for the vehicle, ∼13% of the amine chain ends were PEGylated to promote water solubility and deter nonspecific adsorption. In vitro studies with C. albicans demonstrate that the potency of Pc 4 was not hindered by the dendrimer vehicle. Encapsulated Pc 4 was able to effectively generate ROS and obliterate fungal pathogens upon photoactivation. The results presented within describe a nanoparticulate delivery vehicle for Pc 4 that readily kills drug-resistant C. albicans and eliminates solvent toxicity, thus, improving formulation characteristics for the hydrophobic photosensitizer.
A prominent claim within the literature is that corporate social responsibility-disclosured firms are fundamentally more resilient to financial shocks, relative to firms that take no corporate social responsibility action. To test this, we examine the impact of corporate social responsibility (CSR) information disclosure on financial constraints (FC). Our sample is composed of A-share publicly listed firms from Shanghai and Shenzhen in China during 2013–2017. We find that CSR disclosure influences negatively financial constraints. The quantile regression results also indicate that the influences would more obvious when a company faces stronger financial constraints. Further, CSR disclosure influences negatively financial constraints in financially opaque firms, and the effect of financial opaque on the relationship strengthens when the company faces great financial constraints. After considering the problems of missing variables and endogenous, changing the level of CSR and FC measurement, using 2SLS and two-step GMM methods, the conclusion is still robust. However, the results should not be generalized, since the sample was based on 434 A-share publicly listed firms for 2013–2017. From the perspective of FC, this study contributes to the literature in the field of CSR and expands the empirical research on the economic consequences of CSR. It also can encourage enterprises to voluntarily disclose social responsibility information and it is of great significance to promote the stable development of the capital market and society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.