Background In the early 20th century, Cuban farmers imported Charolais cattle (CHFR) directly from France. These animals are now known as Chacuba (CHCU) and have become adapted to the rough environmental tropical conditions in Cuba. These conditions include long periods of drought and food shortage with extreme temperatures that European taurine cattle have difficulty coping with. Results In this study, we used whole-genome sequence data from 12 CHCU individuals together with 60 whole-genome sequences from six additional taurine, indicus and crossed breeds to estimate the genetic diversity, structure and accurate ancestral origin of the CHCU animals. Although CHCU animals are assumed to form a closed population, the results of our admixture analysis indicate a limited introgression of Bos indicus. We used the extended haplotype homozygosity (EHH) approach to identify regions in the genome that may have had an important role in the adaptation of CHCU to tropical conditions. Putative selection events occurred in genomic regions with a high proportion of Bos indicus, but they were not sufficient to explain adaptation of CHCU to tropical conditions by Bos indicus introgression only. EHH suggested signals of potential adaptation in genomic windows that include genes of taurine origin involved in thermogenesis (ATP9A, GABBR1, PGR, PTPN1 and UCP1) and hair development (CCHCR1 and CDSN). Within these genes, we identified single nucleotide polymorphisms (SNPs) that may have a functional impact and contribute to some of the observed phenotypic differences between CHCU and CHFR animals. Conclusions Whole-genome data confirm that CHCU cattle are closely related to Charolais from France (CHFR) and Canada, but also reveal a limited introgression of Bos indicus genes in CHCU. We observed possible signals of recent adaptation to tropical conditions between CHCU and CHFR founder populations, which were largely independent of the Bos indicus introgression. Finally, we report candidate genes and variants that may have a functional impact and explain some of the phenotypic differences observed between CHCU and CHFR cattle.
Background: Genomic prediction (GP) is a method whereby DNA polymorphism information is used to predict breeding values for complex traits. Although GP can significantly enhance predictive accuracy, it can be expensive and difficult to implement. To help design optimum breeding programs and experiments, including genome-wide association studies and genomic selection experiments, we have developed SeqBreed, a generic and flexible forward simulator programmed in python3. Results:SeqBreed accommodates sex and mitochondrion chromosomes as well as autopolyploidy. It can simulate any number of complex phenotypes that are determined by any number of causal loci. SeqBreed implements several GP methods, including genomic best linear unbiased prediction (GBLUP), single-step GBLUP, pedigree-based BLUP, and mass selection. We illustrate its functionality with Drosophila genome reference panel (DGRP) sequence data and with tetraploid potato genotype data.
Background: Genomic Prediction (GP) is the procedure whereby molecular information is used to predict complex phenotypes. Although GP can significantly enhance predictive accuracy, it can be expensive and difficult to implement. To help in designing optimum experiments, including genome wide association studies and genomic selection experiments, we have developed SeqBreed, a generic and flexible python3 forward simulator. Results: SeqBreed accommodates sex and mitochondrion chromosomes as well as autopolyploidy. It can simulate any number of complex phenotypes determined by any number of causal loci. SeqBreed implements several GP methods, including single step GBLUP. We demonstrate its functionality with Drosophila Genome Reference Panel (DGRP) sequence data and with tetraploid potato genotypes. Conclusions: SeqBreed is a flexible and easy to use tool appropriate for optimizing GP or genome wide association studies. It incorporates some of the most popular GP methods and includes several visualization tools. Code is open and can be freely modified. Software, documentation and examples are available at https://github.com/miguelperezenciso/SeqBreed. ---
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.