Abstract-To reduce the size and improve the performance, a 4th-order miniaturized dual-mode microstrip bandpass filter (BPF) is developed. A meander shorted stub loaded resonator is used, and much compact size is obtained. Theoretical model is set up, and the odd and even modes of the BPF are analyzed based on a symmetrical structure. Full wave simulation validates the design method. To verify the design, a fabricated BPF sample has been tested. Experiment result demonstrates that the designed BPF has wider stopband and better selectivity. Its fractional bandwidth and a center frequency are available.
A wideband filter with a notched band is presented. The proposed filter is formed by cascading three coupling units, and each coupling unit is composed of two curved T-shaped microstrip patches at the top and bottom layers and a circular coupling slot at the mid layer. Overlapping three coupling units could result in a wideband filter with a tunable notched band. To analyse the resonance characteristics, the equivalent circuit model is presented. The notched frequency is 5.8 GHz, and within the passband, the insertion and return losses are better than −2 dB and −15 dB, respectively. The group delays are 0.08 ns and 0.12 ns correspondingly, and the upper stopband reaches 15 GHz. The multi-layer structure leads to a compact size and tight coupling characteristics, and the feasibility and excellent performance of the design is verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.