Purpose The composition of the subchondral bone marrow and cartilage endplate (CEP) could affect intervertebral disc health by influencing vertebral perfusion and nutrient diffusion. However, the relative contributions of these factors to disc degeneration in patients with chronic low back pain (cLBP) have not been quantified. The goal of this study was to use compositional biomarkers derived from quantitative MRI to establish how CEP composition (surrogate for permeability) and vertebral bone marrow fat fraction (BMFF, surrogate for perfusion) relate to disc degeneration. Methods MRI data from 60 patients with cLBP were included in this prospective observational study (28 female, 32 male; age = 40.0 ± 11.9 years, 19–65 [mean ± SD, min–max]). Ultra-short echo-time MRI was used to calculate CEP T2* relaxation times (reflecting biochemical composition), water-fat MRI was used to calculate vertebral BMFF, and T1ρ MRI was used to calculate T1ρ relaxation times in the nucleus pulposus (NP T1ρ, reflecting proteoglycan content and degenerative grade). Univariate linear regression was used to assess the independent effects of CEP T2* and vertebral BMFF on NP T1ρ. Mixed effects multivariable linear regression accounting for age, sex, and BMI was used to assess the combined relationship between variables. Results CEP T2* and vertebral BMFF were independently associated with NP T1ρ (p = 0.003 and 0.0001, respectively). After adjusting for age, sex, and BMI, NP T1ρ remained significantly associated with CEP T2* (p = 0.0001) but not vertebral BMFF (p = 0.43). Conclusion Poor CEP composition plays a significant role in disc degeneration severity and can affect disc health both with and without deficits in vertebral perfusion.
Background T2* relaxation times in the spinal cartilage endplate (CEP) measured using ultra-short echo time magnetic resonance imaging (UTE MRI) reflect aspects of biochemical composition that influence the CEP’s permeability to nutrients. Deficits in CEP composition measured using T2* biomarkers from UTE MRI are associated with more severe intervertebral disc degeneration in patients with chronic low back pain (cLBP). The goal of this study was to develop an objective, accurate, and efficient deep-learning-based method for calculating biomarkers of CEP health using UTE images. Methods Multi-echo UTE MRI of the lumbar spine was acquired from a prospectively enrolled cross-sectional and consecutive cohort of 83 subjects spanning a wide range of ages and cLBP-related conditions. CEPs from the L4-S1 levels were manually segmented on 6,972 UTE images and used to train neural networks utilizing the u-net architecture. CEP segmentations and mean CEP T2* values derived from manually- and model-generated segmentations were compared using Dice scores, sensitivity, specificity, Bland-Altman, and receiver-operator characteristic (ROC) analysis. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated and related to model performance. Results Compared with manual CEP segmentations, model-generated segmentations achieved sensitives of 0.80–0.91, specificities of 0.99, Dice scores of 0.77–0.85, area under the receiver-operating characteristic curve values of 0.99, and precision-recall (PR) AUC values of 0.56–0.77, depending on spinal level and sagittal image position. Mean CEP T2* values and principal CEP angles derived from the model-predicted segmentations had low bias in an unseen test dataset (T2* bias =0.33±2.37 ms, angle bias =0.36±2.65°). To simulate a hypothetical clinical scenario, the predicted segmentations were used to stratify CEPs into high, medium, and low T2* groups. Group predictions had diagnostic sensitivities of 0.77–0.86 and specificities of 0.86–0.95. Model performance was positively associated with image SNR and CNR. Conclusions The trained deep learning models enable accurate, automated CEP segmentations and T2* biomarker computations that are statistically similar to those from manual segmentations. These models address limitations with inefficiency and subjectivity associated with manual methods. Such techniques could be used to elucidate the role of CEP composition in disc degeneration etiology and guide emerging therapies for cLBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.